Chem 343 – Organic Reactions

Chapter 11

Synthesis and Reactions of Ethers #5: Alkoxymercuration-Reduction

1. \(\text{Hg(OAc)}_2 / \text{R-OH} \)
2. \(\text{NaBH}_4 / \text{NaOH} \)

Mechanism

The alcohol molecule can attack either side of the more substituted carbon atom.

The cyclic mercurinium ion has a greater positive charge on the most substituted carbon of the three-membered ring intermediate. The solvent alcohol as the nucleophile in the reaction will then attack and displace the Hg-atom. In the reduction phase of the reaction (\(\text{NaBH}_4 \)) the Hg-carbon bond is broken and mercury is reduced.

The reaction proceeds by a Markovnikov addition regiochemistry. Scrambling occurs at the nucleophilic attack by water and consequently, the stereochemistry of the product results in an anti and syn addition.