Problem Set 11

Due beginning of class on Wednesday, May 2nd

(Make your reasoning clear. We need to understand your reasoning, not just see the final result.)

- 1. (a) Write out the equation for the canonical partition function *Q* in terms of the molecular translational, rotational, and vibrational partition functions of an HCN gas.
	- (b) Find the equation for *E* for the HCN gas in terms of molecular parameters. (recall $E=U-U(0)$). Use the equation for the rotational molecular partition function in the high temperature limit. (*Note: HCN has 4 normal modes: the CH stretch, the CN stretch, and a doubly degenerate bend.*)
	- (c) Find the equation for the molar heat capacity C_p of HCN in terms of molecular parameters and calculate it at 298 K. The normal modes for HCN are at 3311 cm⁻¹ (CH stretch), 712 cm⁻¹ (doubly degenerate bend), and 2097 cm⁻¹ (CN stretch). You may use $C_p = C_v + R$. How does your value of C_p compare to the experimental value of 35.9 J/(mole K)?
- 2. For the reaction:

$$
A_2 + B_2 \Leftrightarrow 2AB
$$

where *A* and *B* are different isotopes of the same atom:

(a) Find the ratio $q^{\scriptscriptstyle T}_{\scriptscriptstyle AB}$ ² $q^T_{A_2}q^T_{B_2}$ $\frac{Z}{T}$ in terms of m_{A_2} , m_{B_2} , and m_{AB} . (*T* refers to the translational partition

function.)

- (b) Find the ratio q_{AB}^R ² $q_{A_2}^R q_{B_2}^R$ $\frac{d}{dR}$ in terms of m_{A_2} , m_{B_2} , and m_{AB} . Use the high temperature limit for the rotational partition functions. Don't forget to include the symmetry number.
- (c) Using the results of parts (a) and (b), and assuming the vibrational and electronic partition functions are 1 , show that the equilibrium constant is equal to: $^{0}_{AB} - \varepsilon^0_{A_2} - \varepsilon^0_{B_2}$ 2 P_2 $4 \frac{m_{AB}}{\sqrt{m_{AB}^2}} e^{-p(2\varepsilon_{AB}-\varepsilon_{A_2}-\varepsilon_{B_2})}$ $m_A^{\mathcal{M}}$ *m* A_2 ^{*H*} B $\frac{AB}{\sqrt{B^2-\beta^0}}e^{-\beta(2\varepsilon_{AB}^0-\varepsilon_{A_2}^0-\varepsilon_{B_2}^0)}$.

 $(\varepsilon_{AB}^0, \varepsilon_{A_2}^0,$ and $\varepsilon_{B_2}^0$ are the zero point energies of AB, A_2 , and B_2 respectively)

(d) For $H_2 + D_2 \Leftrightarrow 2HD$ at 300 K:

(i) Calculate the vibrational partition function of D₂ for $\tilde{V}_{D_2} = 3113 \text{ cm}^{-1}$. Was setting it to 1 above a good approximation for this reaction? Why? Explain qualitatively if this approximation will be better or worse for H_2 and HD.

(ii) Numerically calculate $q_{H_2}^R$ and compare it to the high temperature limit. Is the high temperature limit a good approximation for H₂? Why or why not? ($B_{H_2} = 60 \text{ cm}^{-1}$)

(iii) In the equilibrium constant equation, calculate the partition function term (2 μ ₂ 4 H_2 ^{*III*} D *HD* m_{H_2} m $\frac{m_{HD}}{m_{HD}}$),

and the zero point energy exponential term ($e^{-\beta(2\varepsilon_{HD}^0 - \varepsilon_{H_2}^0 - \varepsilon_{D_2}^0)}$) for \tilde{v}_{H_2} and \tilde{v}_{HD} equal to 4401 $cm⁻¹$ and 3813 $cm⁻¹$ respectively. What is the value of *K*? For this reaction, the relatively significant difference in zero point energies makes the exponential term relevant because the difference in zero point energies is non-zero, resulting in an exponential term that deviates from 1.

(iv) Qualitatively, do you expect the exponential term to be important for the following reaction:

$$
^{35}Cl_2 + ^{37}Cl_2 \Leftrightarrow 2^{35}Cl^{37}Cl
$$

In other words, will the exponential term be close to 1? Why or why not?