Exam 1

- 1. This exam contains 6 pages of questions and instructions, two pages of equations and integrals, a page of tables, a periodic table, and a set of constants and conversion factors.
- 2. Show your work and make your reasoning clear.
- 3. You have 1.5 hours to work on the exam.

1	/25
2.	/25
<u>3.</u>	/25
<u>4.</u>	/25
Total	/100

1a. (13 pts.) Evaluate the commutator $[\hat{A}, \hat{B}]\psi$ for the two operators

$$\hat{A} = \frac{d}{dx} + x$$
 and $\hat{B} = \frac{d}{dx} - x$.

1b. (12 pts) Use your result from above to determine the uncertainty principle for these two operators using $\Delta \hat{A} \Delta \hat{B} \ge \frac{1}{2} \left| \langle \left[\hat{A}, \hat{B} \right] \rangle \right|$.

<u>2</u>a. (5 pts.) Using the two eigenfuctions ψ_m and ψ_n , mathematically define orthonormal.

2b. (10 pts.) Prove that the wavefunctions of a Hermetian operator \hat{A} are orthogonal. The definition of a Hermitian operator is

$$\int \psi_m^* \hat{A} \psi_n dx = \int \psi_n \hat{A}^* \psi_m^* dx \, .$$

Start by using the equations

 $\hat{A}\psi_n = a_n\psi_n$ and $\hat{A}\psi_m = a_m\psi_m$.

2c. (10 pts.) Use the boundary conditions for the particle-on-a-ring wavefunction $\psi(\varphi)$ to derive the allowed quantum numbers $m_l = 0, \pm 1, \pm 2, ...$

3. (25 pts.) Consider the particle-in-a-box for a box from x = 0 to x = L that has the eigenfunctions.

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right).$$

3a. (5 pts) Normalize the wavefunction $\Psi(x) = c\psi_1(x) + c\psi_2(x)$, which is a particle with equal probability of being in n=1 and n=2.

3b. (10 pts) Calculate $\langle p^2 \rangle$ for $\psi_1(x)$.

3c. (5 pts) Consider a box that instead has walls at x = -L and x = +L. Draw the two lowest eigenstates $\psi_1(x)$ and $\psi_2(x)$.

3d. (5 pts) Derive or write the eigenfunction $\psi_1(x)$ that you drew in question 3c above.

- 4. (25 pts) A particle exists in a rectangular box with infinitely high potentials on all sides. Along the x-dimension the box has straight walls separated by a distance L. Along the y-dimension, the box has curved walls with a potential $V(y)=ky^2/2$.
- 4a. (5 pts) Write down the 2D Hamiltonian for this system.

4b. (10 pts) Write down the 2D eigenfunctions, eigenenergies, and quantum numbers for this particle.

4c. (10 pts) Draw the wavefunction as a contour plot for the particle that has been excited by <u>one</u> quantum along x but is in its <u>ground</u> state along y. Also draw the projections of the wavefunction along the x and y axes.

