Assume that reaction went to 100% completion (i.e. no starting material remaining)

¹H-NMR spectrum of crude reaction mixture shown below

Need to determine product ratio in crude reaction mixture using integration values

Which signals do we pick to integrate?

Ethyl and phenyl group signals don't help because they are overlapped or not well resolved

Vinyl and methylene signals are well separated and clear of other signals

Vinyl proton integrations are 24.99 and 24.14 ("raw" or "absolute" values)

Methylene proton integrations are 35.58 and 34.44

There are 2 methylene protons per vinyl proton

Vinyl proton integrations are 24.99 and 24.14

Methylene proton integrations are 35.58 and 34.44

Ratio products =
$$\frac{\text{Integration 1 vinyl proton}}{\text{Integration 1 methylene proton}} = \frac{24.99}{34.44 \div 2} = 1.45 : 1$$

$$\text{Why ÷ 2 ?}$$

because there are 2 methylene protons per vinyl proton

Could also use

$$24.14/(35.58 \div 2) = 1.36 : 1$$

$$24.99/(35.58 \div 2) = 1.40 : 1$$

$$24.14/(34.44 \div 2) = 1.40 : 1$$

Any of the above product ratios are OK to use

What can be concluded about the reaction we performed?

Product ratios from ¹H-NMR signals

- Reaction gave desired product (A) as major product
- Only slight excess of A thus selectivity of reaction is low

Summary

- 1) Assign signals using splitting pattern, J value, and chemical shift
- 2) Look for signals that are well resolved and clear of other signals (i.e. not overlapped or cluttered)
- 3) Use the raw integration values of each signal that you pick
- 4) Account for the number of protons in the molecule that give each signal
- 5) Express ratio in terms of x:1 (x = major product)