Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/124262/Gau-10545.inp" -scrdir="/scratch/webmo-13362/124262/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 10546. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 14-May-2017 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. -------------------------------------------- #N M062X/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; --------------------------- 21. 1-bromo-4-chlorobenzene --------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 Cl 5 B7 6 A6 1 D5 0 H 4 B8 5 A7 6 D6 0 H 3 B9 4 A8 5 D7 0 Br 2 B10 1 A9 6 D8 0 H 1 B11 2 A10 3 D9 0 Variables: B1 1.38528 B2 1.38528 B3 1.38745 B4 1.38535 B5 1.38745 B6 1.08171 B7 1.74149 B8 1.08171 B9 1.08151 B10 1.89636 B11 1.08151 A1 121.1518 A2 119.41861 A3 119.44551 A4 119.41861 A5 120.54705 A6 119.44002 A7 120.00744 A8 120.29712 A9 119.4241 A10 120.28427 D1 0. D2 0. D3 0. D4 180. D5 180. D6 180. D7 180. D8 180. D9 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.385285 3 6 0 1.185526 0.000000 2.101903 4 6 0 2.393939 0.000000 1.420174 5 6 0 2.394324 0.000000 0.034825 6 6 0 1.208543 0.000000 -0.681496 7 1 0 1.229846 0.000000 -1.762993 8 17 0 3.911171 0.000000 -0.820715 9 1 0 3.330504 0.000000 1.961410 10 1 0 1.169151 0.000000 3.183290 11 35 0 -1.651744 0.000000 2.316910 12 1 0 -0.933922 0.000000 -0.545396 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.385285 0.000000 3 C 2.413186 1.385285 0.000000 4 C 2.783494 2.394193 1.387449 0.000000 5 C 2.394577 2.748914 2.394577 1.385349 0.000000 6 C 1.387449 2.394193 2.783494 2.412920 1.385349 7 H 2.149574 3.379967 3.865150 3.389346 2.141999 8 Cl 3.996352 4.490400 3.996352 2.706211 1.741486 9 H 3.865150 3.379967 2.149574 1.081706 2.141999 10 H 3.391202 2.144700 1.081512 2.146784 3.378443 11 Br 2.845405 1.896361 2.845405 4.143874 4.645275 12 H 1.081512 2.144700 3.391202 3.864987 3.378443 6 7 8 9 10 6 C 0.000000 7 H 1.081706 0.000000 8 Cl 2.706211 2.842075 0.000000 9 H 3.389346 4.275972 2.842075 0.000000 10 H 3.864987 4.946656 4.852909 2.482828 0.000000 11 Br 4.143874 4.994915 6.386761 4.994915 2.950943 12 H 2.146784 2.482828 4.852909 4.946656 4.280890 11 12 11 Br 0.000000 12 H 2.950943 0.000000 Stoichiometry C6H4BrCl Framework group C2V[C2(ClCCBr),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.206593 0.025386 2 6 0 0.000000 0.000000 0.705935 3 6 0 0.000000 -1.206593 0.025386 4 6 0 0.000000 -1.206460 -1.362063 5 6 0 0.000000 0.000000 -2.042979 6 6 0 0.000000 1.206460 -1.362063 7 1 0 0.000000 2.137986 -1.911925 8 17 0 0.000000 0.000000 -3.784465 9 1 0 0.000000 -2.137986 -1.911925 10 1 0 0.000000 -2.140445 0.570902 11 35 0 0.000000 0.000000 2.602296 12 1 0 0.000000 2.140445 0.570902 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7219986 0.4428115 0.4110048 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 130 symmetry adapted cartesian basis functions of A1 symmetry. There are 28 symmetry adapted cartesian basis functions of A2 symmetry. There are 50 symmetry adapted cartesian basis functions of B1 symmetry. There are 84 symmetry adapted cartesian basis functions of B2 symmetry. There are 116 symmetry adapted basis functions of A1 symmetry. There are 28 symmetry adapted basis functions of A2 symmetry. There are 50 symmetry adapted basis functions of B1 symmetry. There are 80 symmetry adapted basis functions of B2 symmetry. 274 basis functions, 443 primitive gaussians, 292 cartesian basis functions 46 alpha electrons 46 beta electrons nuclear repulsion energy 589.4486227799 Hartrees. NAtoms= 12 NActive= 12 NUniq= 8 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 274 RedAO= T EigKep= 3.00D-06 NBF= 116 28 50 80 NBsUse= 274 1.00D-06 EigRej= -1.00D+00 NBFU= 116 28 50 80 ExpMin= 3.50D-02 ExpMax= 4.40D+05 ExpMxC= 1.51D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A2) (B2) (B1) (B2) (B1) Virtual (A2) (B1) (A1) (A1) (A1) (B2) (B1) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (B1) (A1) (A2) (B2) (A1) (B2) (A1) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (A2) (A1) (B2) (B2) (B1) (B2) (A1) (A1) (A1) (B2) (B1) (B2) (A1) (B1) (A2) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A2) (B1) (A1) (B1) (B2) (A1) (A1) (A2) (A2) (B1) (A1) (B2) (A1) (B2) (B1) (A1) (B1) (A2) (B2) (A1) (B2) (A1) (A2) (A1) (B2) (B2) (A1) (A1) (B1) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B2) (A2) (B1) (A1) (A2) (B1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (A2) (A1) (B1) (A2) (B2) (A2) (A1) (B1) (A1) (A2) (B2) (B1) (B1) (A1) (B2) (B2) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B2) (B1) (B1) (A1) (A1) (B2) (A1) (B2) (B1) (A1) (B2) (A2) (B1) (A2) (A1) (B2) (B2) (A1) (A2) (A1) (B1) (B1) (B2) (A1) (B2) (A2) (A2) (B2) (A1) (B1) (A1) (B1) (B2) (A1) (A1) (A1) (A2) (B2) (B1) (B1) (A1) (A2) (B1) (A2) (B2) (B2) (A1) (A1) (B2) (A1) (B2) (B2) (A1) (A1) (A1) (B2) (A1) (A1) (B2) (B2) (A2) (A1) (B1) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (A1) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. DSYEVD-2 returned Info= 10412 IAlg= 4 N= 116 NDim= 274 NE2= 978726 trying DSYEV. DSYEVD-2 returned Info= 10412 IAlg= 4 N= 116 NDim= 274 NE2= 978726 trying DSYEV. DSYEVD-2 returned Info= 10412 IAlg= 4 N= 116 NDim= 274 NE2= 978726 trying DSYEV. DSYEVD-2 returned Info= 10412 IAlg= 4 N= 116 NDim= 274 NE2= 978726 trying DSYEV. DSYEVD-2 returned Info= 10412 IAlg= 4 N= 116 NDim= 274 NE2= 978726 trying DSYEV. SCF Done: E(RM062X) = -3265.37822901 A.U. after 14 cycles NFock= 14 Conv=0.57D-08 -V/T= 2.0014 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 274 NBasis= 274 NAE= 46 NBE= 46 NFC= 0 NFV= 0 NROrb= 274 NOA= 46 NOB= 46 NVA= 228 NVB= 228 **** Warning!!: The largest alpha MO coefficient is 0.16933713D+03 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 12 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 3.50D-13 3.33D-08 XBig12= 4.34D+02 1.32D+01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 3.50D-13 3.33D-08 XBig12= 2.73D+00 6.88D-01. 3 vectors produced by pass 2 Test12= 3.50D-13 3.33D-08 XBig12= 1.31D-02 2.93D-02. 3 vectors produced by pass 3 Test12= 3.50D-13 3.33D-08 XBig12= 2.17D-04 5.59D-03. 3 vectors produced by pass 4 Test12= 3.50D-13 3.33D-08 XBig12= 3.06D-06 5.00D-04. 3 vectors produced by pass 5 Test12= 3.50D-13 3.33D-08 XBig12= 1.49D-08 3.52D-05. 3 vectors produced by pass 6 Test12= 3.50D-13 3.33D-08 XBig12= 1.86D-10 4.73D-06. 3 vectors produced by pass 7 Test12= 3.50D-13 3.33D-08 XBig12= 3.02D-12 4.92D-07. 1 vectors produced by pass 8 Test12= 3.50D-13 3.33D-08 XBig12= 3.68D-14 5.36D-08. InvSVY: IOpt=1 It= 1 EMax= 3.55D-15 Solved reduced A of dimension 25 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 35.0986 Anisotropy = 179.8254 XX= 154.9822 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -52.7327 ZY= -48.8672 XZ= 0.0000 YZ= -45.9684 ZZ= 3.0462 Eigenvalues: -79.8548 30.1683 154.9822 2 C Isotropic = 32.3162 Anisotropy = 147.1215 XX= 130.3972 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 46.0920 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -79.5406 Eigenvalues: -79.5406 46.0920 130.3972 3 C Isotropic = 35.0986 Anisotropy = 179.8254 XX= 154.9822 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -52.7327 ZY= 48.8672 XZ= 0.0000 YZ= 45.9684 ZZ= 3.0462 Eigenvalues: -79.8548 30.1683 154.9822 4 C Isotropic = 37.6157 Anisotropy = 178.4378 XX= 156.5742 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -46.3956 ZY= -45.1603 XZ= 0.0000 YZ= -46.3929 ZZ= 2.6684 Eigenvalues: -73.7992 30.0721 156.5742 5 C Isotropic = 27.5033 Anisotropy = 147.8106 XX= 126.0436 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 42.3614 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -85.8952 Eigenvalues: -85.8952 42.3614 126.0436 6 C Isotropic = 37.6157 Anisotropy = 178.4378 XX= 156.5742 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -46.3956 ZY= 45.1603 XZ= 0.0000 YZ= 46.3929 ZZ= 2.6684 Eigenvalues: -73.7992 30.0721 156.5742 7 H Isotropic = 24.1045 Anisotropy = 8.4385 XX= 20.3630 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.1966 ZY= 2.9212 XZ= 0.0000 YZ= 3.6927 ZZ= 27.7539 Eigenvalues: 20.3630 22.2203 29.7302 8 Cl Isotropic = 659.7315 Anisotropy = 513.0752 XX= 462.8959 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 514.5169 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 1001.7816 Eigenvalues: 462.8959 514.5169 1001.7816 9 H Isotropic = 24.1045 Anisotropy = 8.4385 XX= 20.3630 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.1966 ZY= -2.9212 XZ= 0.0000 YZ= -3.6927 ZZ= 27.7539 Eigenvalues: 20.3630 22.2203 29.7302 10 H Isotropic = 24.1265 Anisotropy = 9.9620 XX= 20.1088 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.3139 ZY= 3.7635 XZ= 0.0000 YZ= 4.7553 ZZ= 27.9566 Eigenvalues: 20.1088 21.5028 30.7678 11 Br Isotropic = 1985.6018 Anisotropy = 1348.3503 XX= 1446.8047 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 1625.4987 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 2884.5020 Eigenvalues: 1446.8047 1625.4987 2884.5020 12 H Isotropic = 24.1265 Anisotropy = 9.9620 XX= 20.1088 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.3139 ZY= -3.7635 XZ= 0.0000 YZ= -4.7553 ZZ= 27.9566 Eigenvalues: 20.1088 21.5028 30.7678 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (A1) (B1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (A1) (B1) (B2) (A1) (B1) (B2) (A1) (B1) (B2) (A1) (A2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (B2) (B1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (A1) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B1) (B1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (B1) (A1) (A1) (B2) (B2) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (B1) (A1) (A1) (B2) (B1) (B2) (A1) (B1) (B1) (A2) (A1) (B2) (B2) (A1) (A1) (A2) (B2) (B1) (B1) (A1) (A1) (A2) (A1) (B2) (B1) (A1) (B2) (B2) (A2) (A1) (B1) (A1) (B1) (A2) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (A2) (A1) (B2) (A1) (B1) (B2) (B1) (A1) (B2) (A1) (A2) (B2) (B1) (A1) (A1) (A2) (B1) (A1) (B2) (A1) (A1) (B1) (B2) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A2) (B1) (A1) (A2) (B2) (B1) (B1) (A1) (B2) (A1) (B2) (B1) (A1) (B2) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (B2) (B1) (B1) (A1) (A2) (A2) (B2) (A1) (B2) (A2) (A1) (B1) (B1) (B2) (A1) (A2) (A2) (B2) (A1) (B1) (B2) (B1) (A1) (B2) (A1) (A1) (A2) (A1) (B1) (A2) (B1) (B2) (A1) (B1) (A2) (B2) (A1) (B2) (A1) (B2) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (A1) (B2) (B2) (A2) (A1) (B1) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -485.33334-102.68545 -63.32636 -57.15329 -57.15068 Alpha occ. eigenvalues -- -57.15064 -10.62117 -10.61687 -10.57360 -10.57356 Alpha occ. eigenvalues -- -10.57248 -10.57248 -9.82795 -9.02115 -7.55305 Alpha occ. eigenvalues -- -7.54641 -7.54631 -6.84886 -6.83877 -6.83868 Alpha occ. eigenvalues -- -2.88010 -2.87648 -2.87636 -2.86740 -2.86740 Alpha occ. eigenvalues -- -1.01969 -0.96807 -0.90058 -0.87958 -0.81578 Alpha occ. eigenvalues -- -0.73007 -0.69216 -0.60378 -0.56882 -0.55216 Alpha occ. eigenvalues -- -0.52246 -0.49950 -0.49344 -0.44779 -0.43337 Alpha occ. eigenvalues -- -0.43229 -0.38912 -0.37284 -0.35947 -0.33900 Alpha occ. eigenvalues -- -0.30087 Alpha virt. eigenvalues -- -0.00983 -0.00828 0.00173 0.01434 0.02158 Alpha virt. eigenvalues -- 0.02428 0.04073 0.04822 0.04985 0.05490 Alpha virt. eigenvalues -- 0.06445 0.06620 0.07608 0.08519 0.09111 Alpha virt. eigenvalues -- 0.10164 0.10629 0.10896 0.12932 0.13586 Alpha virt. eigenvalues -- 0.14025 0.14562 0.14616 0.14793 0.16411 Alpha virt. eigenvalues -- 0.16432 0.16757 0.19433 0.19643 0.19953 Alpha virt. eigenvalues -- 0.20434 0.21534 0.21606 0.22237 0.23142 Alpha virt. eigenvalues -- 0.24687 0.24710 0.25280 0.26334 0.27309 Alpha virt. eigenvalues -- 0.28441 0.31273 0.31314 0.31550 0.33745 Alpha virt. eigenvalues -- 0.36122 0.38090 0.41033 0.41384 0.42916 Alpha virt. eigenvalues -- 0.43297 0.46247 0.46880 0.47172 0.48780 Alpha virt. eigenvalues -- 0.49724 0.50144 0.50224 0.52257 0.53238 Alpha virt. eigenvalues -- 0.53838 0.54604 0.55424 0.55478 0.58430 Alpha virt. eigenvalues -- 0.58596 0.61195 0.62411 0.63315 0.63368 Alpha virt. eigenvalues -- 0.64383 0.66577 0.67202 0.68121 0.68432 Alpha virt. eigenvalues -- 0.71289 0.71313 0.73500 0.74102 0.78192 Alpha virt. eigenvalues -- 0.79284 0.79544 0.80660 0.80722 0.83301 Alpha virt. eigenvalues -- 0.85138 0.85671 0.85853 0.87682 0.87991 Alpha virt. eigenvalues -- 0.90833 0.92748 0.93274 0.96441 0.97523 Alpha virt. eigenvalues -- 1.00540 1.05141 1.06448 1.14223 1.14446 Alpha virt. eigenvalues -- 1.17693 1.20170 1.22168 1.25457 1.25503 Alpha virt. eigenvalues -- 1.26639 1.31793 1.32474 1.33561 1.34145 Alpha virt. eigenvalues -- 1.35438 1.37250 1.40748 1.50590 1.51672 Alpha virt. eigenvalues -- 1.53554 1.56963 1.59573 1.60430 1.62555 Alpha virt. eigenvalues -- 1.72186 1.77236 1.78986 1.79623 1.84288 Alpha virt. eigenvalues -- 1.86802 1.92093 1.94964 2.00622 2.03034 Alpha virt. eigenvalues -- 2.03571 2.10768 2.15303 2.18275 2.29165 Alpha virt. eigenvalues -- 2.29240 2.31740 2.38235 2.38264 2.40475 Alpha virt. eigenvalues -- 2.41810 2.45797 2.49401 2.52459 2.53502 Alpha virt. eigenvalues -- 2.56674 2.63111 2.64441 2.67450 2.74008 Alpha virt. eigenvalues -- 2.74938 2.77163 2.77438 2.85034 2.85901 Alpha virt. eigenvalues -- 2.86676 2.88949 2.89803 2.95971 2.97147 Alpha virt. eigenvalues -- 3.00999 3.03744 3.09109 3.12041 3.15458 Alpha virt. eigenvalues -- 3.21287 3.22605 3.26232 3.28086 3.29093 Alpha virt. eigenvalues -- 3.33279 3.34498 3.34986 3.38243 3.39162 Alpha virt. eigenvalues -- 3.45236 3.46288 3.49418 3.55540 3.56302 Alpha virt. eigenvalues -- 3.56562 3.57565 3.57825 3.58722 3.62427 Alpha virt. eigenvalues -- 3.63394 3.72137 3.75759 3.81536 3.81784 Alpha virt. eigenvalues -- 3.84913 3.87632 3.92398 3.94255 3.95775 Alpha virt. eigenvalues -- 3.98284 4.05976 4.36051 4.48263 4.55522 Alpha virt. eigenvalues -- 4.69651 4.79349 5.24831 6.32900 6.37506 Alpha virt. eigenvalues -- 6.38036 6.53899 6.54401 7.11395 7.64586 Alpha virt. eigenvalues -- 7.76890 7.93311 10.07290 23.63474 24.05806 Alpha virt. eigenvalues -- 24.05860 24.09618 24.11153 24.18309 25.97458 Alpha virt. eigenvalues -- 26.36769 27.45491 48.51939 216.18617 290.79796 Alpha virt. eigenvalues -- 290.93216 291.133511021.12116 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 8.790045 0.173925 -1.338031 -1.510962 -0.739569 0.463783 2 C 0.173925 7.492376 0.173925 0.050483 -2.133907 0.050483 3 C -1.338031 0.173925 8.790045 0.463783 -0.739569 -1.510962 4 C -1.510962 0.050483 0.463783 13.574034 -1.107033 -5.577971 5 C -0.739569 -2.133907 -0.739569 -1.107033 11.640134 -1.107033 6 C 0.463783 0.050483 -1.510962 -5.577971 -1.107033 13.574034 7 H 0.005618 -0.008748 0.005249 0.017905 0.052324 0.273300 8 Cl 0.108926 0.061511 0.108926 0.391930 -1.102124 0.391930 9 H 0.005249 -0.008748 0.005618 0.273300 0.052324 0.017905 10 H -0.010827 -0.028712 0.388751 -0.020798 0.021006 -0.001958 11 Br 0.207878 -0.524851 0.207878 0.073608 0.051989 0.073608 12 H 0.388751 -0.028712 -0.010827 -0.001958 0.021006 -0.020798 7 8 9 10 11 12 1 C 0.005618 0.108926 0.005249 -0.010827 0.207878 0.388751 2 C -0.008748 0.061511 -0.008748 -0.028712 -0.524851 -0.028712 3 C 0.005249 0.108926 0.005618 0.388751 0.207878 -0.010827 4 C 0.017905 0.391930 0.273300 -0.020798 0.073608 -0.001958 5 C 0.052324 -1.102124 0.052324 0.021006 0.051989 0.021006 6 C 0.273300 0.391930 0.017905 -0.001958 0.073608 -0.020798 7 H 0.505485 -0.008749 -0.000034 0.000019 -0.000344 -0.003313 8 Cl -0.008749 17.093090 -0.008749 -0.000381 -0.000714 -0.000381 9 H -0.000034 -0.008749 0.505485 -0.003313 -0.000344 0.000019 10 H 0.000019 -0.000381 -0.003313 0.503768 -0.006518 0.000054 11 Br -0.000344 -0.000714 -0.000344 -0.006518 35.008727 -0.006518 12 H -0.003313 -0.000381 0.000019 0.000054 -0.006518 0.503768 Mulliken charges: 1 1 C -0.544786 2 C 0.730974 3 C -0.544786 4 C -0.626320 5 C 1.090452 6 C -0.626320 7 H 0.161288 8 Cl -0.035214 9 H 0.161288 10 H 0.158910 11 Br -0.084397 12 H 0.158910 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.385875 2 C 0.730974 3 C -0.385875 4 C -0.465032 5 C 1.090452 6 C -0.465032 8 Cl -0.035214 11 Br -0.084397 Electronic spatial extent (au): = 2262.0136 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.0628 Tot= 0.0628 Quadrupole moment (field-independent basis, Debye-Ang): XX= -69.2166 YY= -58.7930 ZZ= -70.9661 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.8914 YY= 7.5322 ZZ= -4.6409 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 83.5316 XYY= 0.0000 XXY= 0.0000 XXZ= 24.6543 XZZ= 0.0000 YZZ= 0.0000 YYZ= 17.7859 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -81.5199 YYYY= -288.7924 ZZZZ= -2187.7689 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.4113 XXZZ= -395.6671 YYZZ= -416.5139 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.894486227799D+02 E-N=-8.962247664894D+03 KE= 3.260711469409D+03 Symmetry A1 KE= 2.372776541581D+03 Symmetry A2 KE= 4.557063158669D+01 Symmetry B1 KE= 3.839992721376D+02 Symmetry B2 KE= 4.583650241032D+02 1\1\GINC-COMPUTE-0-12\SP\RM062X\6-311+G(2d,p)\C6H4Br1Cl1\ZDANOVSKAIA\1 4-May-2017\0\\#N M062X/6-311+G(2d,p) NMR Geom=Connectivity\\21. 1-brom o-4-chlorobenzene\\0,1\C\C,1,1.385284667\C,2,1.385284667,1,121.1518024 \C,3,1.387449006,2,119.4186065,1,0.,0\C,4,1.385349173,3,119.445514,2,0 .,0\C,1,1.387449006,2,119.4186065,3,0.,0\H,6,1.081706479,1,120.5470494 ,2,180.,0\Cl,5,1.741486,6,119.4400217,1,180.,0\H,4,1.081706479,5,120.0 074366,6,180.,0\H,3,1.081511565,4,120.2971196,5,180.,0\Br,2,1.896361,1 ,119.4240988,6,180.,0\H,1,1.081511565,2,120.284274,3,180.,0\\Version=E M64L-G09RevD.01\State=1-A1\HF=-3265.378229\RMSD=5.686e-09\Dipole=0.021 5118,0.,-0.0121332\Quadrupole=-1.2660837,-2.1496684,3.415752,0.,3.8726 631,0.\PG=C02V [C2(Cl1C1C1Br1),SGV(C4H4)]\\@ WE'RE IN THE POSITION OF A VISITOR FROM ANOTHER DIMENSION WHO COMES TO EARTH AND SEES A CHESS MATCH. ASSUMING HE KNOWS IT'S A GAME, HE'S GOT TWO PROBLEMS: FIRST, FIGURE OUT THE RULES, AND SECOND, FIGURE OUT HOW TO WIN. NINETY PERCENT OF SCIENCE (INCLUDING VIRTUALLY ALL OF CHEMISRY) IS IN THAT SECOND CATEGORY. THEY'RE TRYING TO APPLY THE LAWS THAT ARE ALREADY KNOWN. -- SHELDON GLASHOW, 1979 Job cpu time: 0 days 0 hours 9 minutes 56.6 seconds. File lengths (MBytes): RWF= 45 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 09 at Sun May 14 16:59:54 2017.