Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/124263/Gau-10264.inp" -scrdir="/scratch/webmo-13362/124263/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 10265. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 14-May-2017 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. -------------------------------------------- #N M062X/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------------ 21. 4-chlorobenzaldehyde ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 C 5 B7 6 A6 1 D5 0 O 8 B8 5 A7 6 D6 0 H 8 B9 5 A8 6 D7 0 H 4 B10 5 A9 6 D8 0 H 3 B11 4 A10 5 D9 0 Cl 2 B12 1 A11 6 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.39085 B2 1.38588 B3 1.38658 B4 1.38994 B5 1.38207 B6 1.08319 B7 1.48112 B8 1.20209 B9 1.10752 B10 1.08463 B11 1.08141 B12 1.739 B13 1.08168 A1 121.73109 A2 118.65943 A3 120.4615 A4 119.01421 A5 121.08817 A6 120.28825 A7 124.10723 A8 115.08078 A9 119.74356 A10 121.3697 A11 119.09212 A12 119.71295 D1 0. D2 0. D3 0. D4 180. D5 180. D6 0. D7 180. D8 180. D9 180. D10 180. D11 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.390854 3 6 0 1.178726 0.000000 2.119733 4 6 0 2.384240 0.000000 1.434642 5 6 0 2.404909 0.000000 0.044852 6 6 0 1.208622 0.000000 -0.670342 7 1 0 1.247823 0.000000 -1.752826 8 6 0 3.702337 0.000000 -0.669561 9 8 0 3.812714 0.000000 -1.866571 10 1 0 4.597426 0.000000 -0.017321 11 1 0 3.317866 0.000000 1.986689 12 1 0 1.145508 0.000000 3.200634 13 17 0 -1.519609 0.000000 2.236384 14 1 0 -0.939459 0.000000 -0.536140 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.390854 0.000000 3 C 2.425420 1.385879 0.000000 4 C 2.782589 2.384643 1.386585 0.000000 5 C 2.405327 2.755958 2.410116 1.389943 0.000000 6 C 1.382073 2.389413 2.790236 2.411024 1.393773 7 H 2.151618 3.382275 3.873176 3.383991 2.137872 8 C 3.762394 4.237052 3.761486 2.482952 1.481117 9 O 4.245100 5.014739 4.777920 3.597018 2.373911 10 H 4.597458 4.808251 4.031689 2.646958 2.193398 11 H 3.867191 3.370942 2.143273 1.084625 2.145745 12 H 3.399448 2.141844 1.081411 2.157125 3.397801 13 Cl 2.703817 1.739003 2.700855 3.985327 4.494959 14 H 1.081679 2.143802 3.397112 3.864060 3.394459 6 7 8 9 10 6 C 0.000000 7 H 1.083194 0.000000 8 C 2.493715 2.682928 0.000000 9 O 2.865703 2.567412 1.202088 0.000000 10 H 3.451148 3.772508 1.107520 2.008855 0.000000 11 H 3.392450 4.274231 2.683930 3.884905 2.377673 12 H 3.871491 4.954517 4.638511 5.726304 4.719213 13 Cl 3.986515 4.855149 5.976055 6.728143 6.518995 14 H 2.152270 2.502904 4.643713 4.934896 5.561139 11 12 13 14 11 H 0.000000 12 H 2.488534 0.000000 13 Cl 4.843915 2.834189 0.000000 14 H 4.948684 4.279085 2.832571 0.000000 Stoichiometry C7H5ClO Framework group CS[SG(C7H5ClO)] Deg. of freedom 25 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.286617 0.000000 2 6 0 -1.190777 0.567921 0.000000 3 6 0 -1.205723 -0.817877 0.000000 4 6 0 0.003743 -1.495969 0.000000 5 6 0 1.204289 -0.795518 0.000000 6 6 0 1.198444 0.598243 0.000000 7 1 0 2.145467 1.124034 0.000000 8 6 0 2.486353 -1.537150 0.000000 9 8 0 3.568206 -1.013117 0.000000 10 1 0 2.390458 -2.640511 0.000000 11 1 0 0.013541 -2.580550 0.000000 12 1 0 -2.148299 -1.347972 0.000000 13 17 0 -2.699904 1.432021 0.000000 14 1 0 -0.026432 2.367973 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1076960 0.6950567 0.6118024 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 220 symmetry adapted cartesian basis functions of A' symmetry. There are 79 symmetry adapted cartesian basis functions of A" symmetry. There are 202 symmetry adapted basis functions of A' symmetry. There are 79 symmetry adapted basis functions of A" symmetry. 281 basis functions, 435 primitive gaussians, 299 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 453.1766347871 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 281 RedAO= T EigKep= 2.77D-06 NBF= 202 79 NBsUse= 281 1.00D-06 EigRej= -1.00D+00 NBFU= 202 79 ExpMin= 4.38D-02 ExpMax= 1.06D+05 ExpMxC= 3.62D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A") (A') (A') (A") Virtual (A") (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A") (A") (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A") (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RM062X) = -805.129446869 A.U. after 15 cycles NFock= 15 Conv=0.82D-08 -V/T= 2.0028 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 281 NBasis= 281 NAE= 36 NBE= 36 NFC= 0 NFV= 0 NROrb= 281 NOA= 36 NOB= 36 NVA= 245 NVB= 245 **** Warning!!: The largest alpha MO coefficient is 0.21048702D+03 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 14 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.94D-13 3.33D-08 XBig12= 3.14D+02 1.30D+01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.94D-13 3.33D-08 XBig12= 1.95D+00 5.70D-01. 3 vectors produced by pass 2 Test12= 2.94D-13 3.33D-08 XBig12= 1.49D-02 6.67D-02. 3 vectors produced by pass 3 Test12= 2.94D-13 3.33D-08 XBig12= 3.17D-04 5.26D-03. 3 vectors produced by pass 4 Test12= 2.94D-13 3.33D-08 XBig12= 3.13D-06 4.93D-04. 3 vectors produced by pass 5 Test12= 2.94D-13 3.33D-08 XBig12= 3.59D-08 4.78D-05. 3 vectors produced by pass 6 Test12= 2.94D-13 3.33D-08 XBig12= 4.27D-10 4.78D-06. 3 vectors produced by pass 7 Test12= 2.94D-13 3.33D-08 XBig12= 5.62D-12 5.87D-07. 3 vectors produced by pass 8 Test12= 2.94D-13 3.33D-08 XBig12= 6.22D-14 6.83D-08. InvSVY: IOpt=1 It= 1 EMax= 1.78D-15 Solved reduced A of dimension 27 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 37.9211 Anisotropy = 185.1331 XX= 27.6592 YX= -2.3172 ZX= 0.0000 XY= -0.5026 YY= -75.2390 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 161.3432 Eigenvalues: -75.2583 27.6785 161.3432 2 C Isotropic = 19.3182 Anisotropy = 157.4943 XX= -67.3786 YX= 56.7261 ZX= 0.0000 XY= 54.7246 YY= 1.0187 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 124.3143 Eigenvalues: -98.5624 32.2025 124.3143 3 C Isotropic = 38.5378 Anisotropy = 182.2060 XX= -49.0829 YX= -43.5053 ZX= 0.0000 XY= -46.2696 YY= 4.6879 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 160.0085 Eigenvalues: -74.5206 30.1256 160.0085 4 C Isotropic = 33.3292 Anisotropy = 214.3695 XX= 5.0365 YX= 13.3279 ZX= 0.0000 XY= -5.4650 YY= -81.2912 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 176.2421 Eigenvalues: -81.4698 5.2152 176.2421 5 C Isotropic = 31.6228 Anisotropy = 205.8776 XX= -57.0812 YX= 24.4887 ZX= 0.0000 XY= 27.2323 YY= -16.9250 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 168.8745 Eigenvalues: -69.7429 -4.2633 168.8745 6 C Isotropic = 39.0398 Anisotropy = 221.5308 XX= -49.3928 YX= -47.2241 ZX= 0.0000 XY= -36.3954 YY= -20.2148 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 186.7269 Eigenvalues: -79.0858 9.4782 186.7269 7 H Isotropic = 23.1216 Anisotropy = 6.7237 XX= 24.4159 YX= -3.0041 ZX= 0.0000 XY= -2.6882 YY= 25.0632 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.8858 Eigenvalues: 19.8858 21.8750 27.6041 8 C Isotropic = -23.3199 Anisotropy = 164.7707 XX= -45.2231 YX= 27.6939 ZX= 0.0000 XY= 30.6944 YY= -111.2638 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 86.5273 Eigenvalues: -122.3189 -34.1680 86.5273 9 O Isotropic = -427.3763 Anisotropy = 1219.2749 XX= -1071.8012 YX= -271.5602 ZX= 0.0000 XY= -178.9701 YY= -595.8012 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 385.4736 Eigenvalues: -1161.5029 -506.0996 385.4736 10 H Isotropic = 21.1466 Anisotropy = 3.3254 XX= 23.1294 YX= 1.2933 ZX= 0.0000 XY= -2.7327 YY= 21.1515 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.1589 Eigenvalues: 19.1589 20.9174 23.3635 11 H Isotropic = 23.5048 Anisotropy = 5.6142 XX= 27.1608 YX= -0.1195 ZX= 0.0000 XY= -1.2177 YY= 22.0988 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.2548 Eigenvalues: 21.2548 22.0120 27.2476 12 H Isotropic = 23.8744 Anisotropy = 8.8118 XX= 23.0144 YX= -3.4342 ZX= 0.0000 XY= -3.0086 YY= 28.2080 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 20.4008 Eigenvalues: 20.4008 21.4735 29.7490 13 Cl Isotropic = 665.3231 Anisotropy = 442.8160 XX= 846.4872 YX= -203.4518 ZX= 0.0000 XY= -200.9538 YY= 602.0309 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 547.4511 Eigenvalues: 487.9844 547.4511 960.5337 14 H Isotropic = 23.6922 Anisotropy = 9.2897 XX= 29.8292 YX= 0.8660 ZX= 0.0000 XY= 0.4946 YY= 21.6353 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.6120 Eigenvalues: 19.6120 21.5792 29.8853 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A") (A") Virtual (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A') (A") (A") (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -102.69066 -19.63492 -10.64073 -10.62996 -10.57873 Alpha occ. eigenvalues -- -10.57444 -10.57361 -10.57269 -10.57075 -9.83324 Alpha occ. eigenvalues -- -7.55831 -7.55174 -7.55153 -1.18794 -1.02086 Alpha occ. eigenvalues -- -0.96300 -0.88112 -0.86589 -0.74591 -0.72850 Alpha occ. eigenvalues -- -0.67542 -0.61489 -0.57830 -0.55761 -0.53301 Alpha occ. eigenvalues -- -0.52529 -0.52184 -0.50492 -0.47540 -0.45773 Alpha occ. eigenvalues -- -0.44096 -0.41401 -0.39295 -0.34593 -0.34130 Alpha occ. eigenvalues -- -0.31964 Alpha virt. eigenvalues -- -0.04749 -0.01038 0.00528 0.01767 0.02583 Alpha virt. eigenvalues -- 0.03215 0.03302 0.04857 0.05670 0.05863 Alpha virt. eigenvalues -- 0.06440 0.07278 0.07792 0.08606 0.08611 Alpha virt. eigenvalues -- 0.09507 0.11136 0.11340 0.13080 0.13191 Alpha virt. eigenvalues -- 0.14098 0.14372 0.14590 0.15048 0.16072 Alpha virt. eigenvalues -- 0.17302 0.17741 0.18737 0.19326 0.20482 Alpha virt. eigenvalues -- 0.20650 0.20974 0.21880 0.22187 0.23160 Alpha virt. eigenvalues -- 0.23407 0.24037 0.24685 0.25678 0.26997 Alpha virt. eigenvalues -- 0.27445 0.28551 0.29011 0.30205 0.31192 Alpha virt. eigenvalues -- 0.32754 0.33168 0.34141 0.35440 0.37609 Alpha virt. eigenvalues -- 0.41208 0.42904 0.44353 0.45766 0.46584 Alpha virt. eigenvalues -- 0.46935 0.49054 0.50098 0.51239 0.52478 Alpha virt. eigenvalues -- 0.53381 0.53833 0.54142 0.54198 0.54541 Alpha virt. eigenvalues -- 0.54751 0.57179 0.59405 0.60221 0.61089 Alpha virt. eigenvalues -- 0.63007 0.63012 0.65600 0.66069 0.68087 Alpha virt. eigenvalues -- 0.68763 0.69676 0.70321 0.71319 0.72122 Alpha virt. eigenvalues -- 0.72665 0.74172 0.77722 0.79336 0.79645 Alpha virt. eigenvalues -- 0.80553 0.81851 0.83045 0.83076 0.83121 Alpha virt. eigenvalues -- 0.85235 0.85302 0.86706 0.88298 0.91164 Alpha virt. eigenvalues -- 0.93348 0.94383 0.96288 0.96629 0.98404 Alpha virt. eigenvalues -- 1.04260 1.06083 1.07562 1.09101 1.10578 Alpha virt. eigenvalues -- 1.15109 1.17712 1.18074 1.20416 1.22097 Alpha virt. eigenvalues -- 1.22970 1.23814 1.25683 1.28004 1.29665 Alpha virt. eigenvalues -- 1.31097 1.33585 1.35080 1.36045 1.36707 Alpha virt. eigenvalues -- 1.37265 1.42470 1.47762 1.50426 1.52119 Alpha virt. eigenvalues -- 1.56846 1.60218 1.62127 1.63729 1.63996 Alpha virt. eigenvalues -- 1.64949 1.72172 1.77737 1.78037 1.79167 Alpha virt. eigenvalues -- 1.79604 1.82819 1.86069 1.92871 1.93194 Alpha virt. eigenvalues -- 1.98825 2.09696 2.10501 2.13636 2.23112 Alpha virt. eigenvalues -- 2.31221 2.31566 2.35461 2.40046 2.40321 Alpha virt. eigenvalues -- 2.41250 2.48344 2.49718 2.51841 2.51968 Alpha virt. eigenvalues -- 2.55485 2.60189 2.62130 2.64322 2.67980 Alpha virt. eigenvalues -- 2.71690 2.74992 2.75960 2.77359 2.77657 Alpha virt. eigenvalues -- 2.78195 2.85122 2.86461 2.89679 2.89712 Alpha virt. eigenvalues -- 2.92539 2.95424 2.97981 3.03164 3.07357 Alpha virt. eigenvalues -- 3.10369 3.11711 3.13078 3.15558 3.16482 Alpha virt. eigenvalues -- 3.21619 3.26648 3.29357 3.30662 3.31662 Alpha virt. eigenvalues -- 3.35052 3.35383 3.37300 3.40991 3.42983 Alpha virt. eigenvalues -- 3.44868 3.45460 3.46456 3.47630 3.55453 Alpha virt. eigenvalues -- 3.55921 3.56425 3.57755 3.58970 3.59561 Alpha virt. eigenvalues -- 3.60115 3.60315 3.63666 3.66852 3.74164 Alpha virt. eigenvalues -- 3.74650 3.77517 3.82988 3.85995 3.88881 Alpha virt. eigenvalues -- 3.93135 3.94799 3.96261 4.00633 4.03579 Alpha virt. eigenvalues -- 4.05901 4.10802 4.18143 4.43573 4.49840 Alpha virt. eigenvalues -- 4.64756 4.79092 4.87374 5.14259 5.27431 Alpha virt. eigenvalues -- 5.35848 6.13775 6.79727 6.86078 7.00211 Alpha virt. eigenvalues -- 7.19629 7.23235 10.06742 23.69928 24.02745 Alpha virt. eigenvalues -- 24.07638 24.10219 24.16624 24.20557 24.24235 Alpha virt. eigenvalues -- 25.96947 26.37351 27.46974 50.09817 216.18078 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 14.521781 -1.404523 -5.527607 -1.214613 -0.076787 -0.865718 2 C -1.404523 11.755002 -1.691873 -0.222231 -1.933933 -0.376621 3 C -5.527607 -1.691873 14.731422 -0.591782 0.364143 -1.673701 4 C -1.214613 -0.222231 -0.591782 8.651450 -0.292667 -0.272798 5 C -0.076787 -1.933933 0.364143 -0.292667 7.553011 0.701994 6 C -0.865718 -0.376621 -1.673701 -0.272798 0.701994 8.705368 7 H -0.047979 0.010628 -0.009081 0.019992 0.015966 0.370604 8 C 0.344511 -0.222349 0.244744 0.035587 -0.751596 -0.228015 9 O 0.075734 -0.011059 0.030412 -0.010624 0.035835 -0.198214 10 H 0.001230 0.006941 0.048105 0.160894 -0.180867 -0.110297 11 H 0.003450 0.009691 0.018227 0.335154 -0.015822 -0.009249 12 H 0.032170 0.075227 0.258613 0.009725 -0.020957 -0.003291 13 Cl 0.448321 -1.179614 0.399446 0.115946 0.069803 0.041433 14 H 0.281840 0.050471 0.030305 -0.003823 -0.004312 -0.003911 7 8 9 10 11 12 1 C -0.047979 0.344511 0.075734 0.001230 0.003450 0.032170 2 C 0.010628 -0.222349 -0.011059 0.006941 0.009691 0.075227 3 C -0.009081 0.244744 0.030412 0.048105 0.018227 0.258613 4 C 0.019992 0.035587 -0.010624 0.160894 0.335154 0.009725 5 C 0.015966 -0.751596 0.035835 -0.180867 -0.015822 -0.020957 6 C 0.370604 -0.228015 -0.198214 -0.110297 -0.009249 -0.003291 7 H 0.482233 -0.011351 0.005319 0.000170 -0.000227 0.000038 8 C -0.011351 5.861605 0.385180 0.413550 -0.003050 -0.002637 9 O 0.005319 0.385180 8.111140 -0.057470 0.000554 -0.000008 10 H 0.000170 0.413550 -0.057470 0.592195 0.006299 0.000054 11 H -0.000227 -0.003050 0.000554 0.006299 0.516104 -0.003455 12 H 0.000038 -0.002637 -0.000008 0.000054 -0.003455 0.504045 13 Cl -0.000277 -0.005820 0.000354 0.000198 -0.000078 -0.010134 14 H -0.003183 -0.002368 0.000132 0.000024 0.000046 -0.000048 13 14 1 C 0.448321 0.281840 2 C -1.179614 0.050471 3 C 0.399446 0.030305 4 C 0.115946 -0.003823 5 C 0.069803 -0.004312 6 C 0.041433 -0.003911 7 H -0.000277 -0.003183 8 C -0.005820 -0.002368 9 O 0.000354 0.000132 10 H 0.000198 0.000024 11 H -0.000078 0.000046 12 H -0.010134 -0.000048 13 Cl 17.125018 -0.009684 14 H -0.009684 0.502919 Mulliken charges: 1 1 C -0.571809 2 C 1.134243 3 C -0.631373 4 C -0.720211 5 C 0.536189 6 C -0.077583 7 H 0.167146 8 C -0.057991 9 O -0.367284 10 H 0.118974 11 H 0.142357 12 H 0.160657 13 Cl 0.005091 14 H 0.161593 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.410216 2 C 1.134243 3 C -0.470716 4 C -0.577854 5 C 0.536189 6 C 0.089564 8 C 0.060983 9 O -0.367284 13 Cl 0.005091 Electronic spatial extent (au): = 1662.6086 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -1.8901 Y= -0.9940 Z= 0.0000 Tot= 2.1355 Quadrupole moment (field-independent basis, Debye-Ang): XX= -72.3882 YY= -50.8842 ZZ= -61.1836 XY= 3.8667 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.9029 YY= 10.6011 ZZ= 0.3017 XY= 3.8667 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -61.6205 YYY= -6.6627 ZZZ= 0.0000 XYY= 5.3071 XXY= 8.7050 XXZ= 0.0000 XZZ= 1.7905 YZZ= 0.8051 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1723.2084 YYYY= -548.9405 ZZZZ= -68.0581 XXXY= 327.3076 XXXZ= 0.0000 YYYX= 256.0705 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -333.3307 XXZZ= -260.0789 YYZZ= -117.4611 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 88.6554 N-N= 4.531766347871D+02 E-N=-2.803409338603D+03 KE= 8.029158383781D+02 Symmetry A' KE= 7.469892486137D+02 Symmetry A" KE= 5.592658976436D+01 1\1\GINC-COMPUTE-0-13\SP\RM062X\6-311+G(2d,p)\C7H5Cl1O1\ZDANOVSKAIA\14 -May-2017\0\\#N M062X/6-311+G(2d,p) NMR Geom=Connectivity\\21. 4-chlor obenzaldehyde\\0,1\C\C,1,1.390853624\C,2,1.385878595,1,121.7310888\C,3 ,1.386584569,2,118.6594279,1,0.,0\C,4,1.389943273,3,120.4614991,2,0.,0 \C,1,1.382073365,2,119.0142094,3,0.,0\H,6,1.083193768,1,121.0881685,2, 180.,0\C,5,1.481116512,6,120.2882535,1,180.,0\O,8,1.202087955,5,124.10 72327,6,0.,0\H,8,1.10752036,5,115.0807814,6,180.,0\H,4,1.084625256,5,1 19.7435646,6,180.,0\H,3,1.081411219,4,121.3697031,5,180.,0\Cl,2,1.7390 03482,1,119.0921237,6,180.,0\H,1,1.081678996,2,119.7129469,3,180.,0\\V ersion=EM64L-G09RevD.01\State=1-A'\HF=-805.1294469\RMSD=8.230e-09\Dipo le=-0.0494385,0.,0.8387098\Quadrupole=1.0691737,0.2243423,-1.293516,0. ,8.4125117,0.\PG=CS [SG(C7H5Cl1O1)]\\@ You never know when you're making a memory. -- Rickie Lee Jones Job cpu time: 0 days 0 hours 15 minutes 36.4 seconds. File lengths (MBytes): RWF= 47 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 09 at Sun May 14 17:00:51 2017.