Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/124451/Gau-32190.inp" -scrdir="/scratch/webmo-13362/124451/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 32191. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 18-May-2017 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. ----------------------------------------------- #N MP2/6-311+G(2d,p) OPT FREQ Geom=Connectivity ----------------------------------------------- 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 6/7=2,8=2,9=2,10=2/1; 7/12=2/1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=4,6=6,7=112,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 8/6=4,10=2/1; 9/15=2,16=-3/6; 10/5=1/2; 7/12=2/1,2,3,16; 1/18=20,19=15/3(-8); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; ------------- Sulfuric Acid ------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 S O 1 B1 H 2 B2 1 A1 O 1 B3 2 A2 3 D1 0 H 4 B4 1 A3 2 D2 0 O 1 B5 2 A4 3 D3 0 O 1 B6 2 A5 3 D4 0 Variables: B1 1.75 B2 1.05 B3 1.75 B4 1.05 B5 1.74999 B6 1.74999 A1 109.44851 A2 109.47043 A3 109.44851 A4 109.47167 A5 109.46978 D1 119.99959 D2 119.99959 D3 -120.00237 D4 0.0004 2 tetrahedral angles replaced. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.75 estimate D2E/DX2 ! ! R2 R(1,4) 1.75 estimate D2E/DX2 ! ! R3 R(1,6) 1.75 estimate D2E/DX2 ! ! R4 R(1,7) 1.75 estimate D2E/DX2 ! ! R5 R(2,3) 1.05 estimate D2E/DX2 ! ! R6 R(4,5) 1.05 estimate D2E/DX2 ! ! A1 A(2,1,4) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,6) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,7) 109.4698 estimate D2E/DX2 ! ! A4 A(4,1,6) 109.4696 estimate D2E/DX2 ! ! A5 A(4,1,7) 109.4713 estimate D2E/DX2 ! ! A6 A(6,1,7) 109.4742 estimate D2E/DX2 ! ! A7 A(1,2,3) 109.4485 estimate D2E/DX2 ! ! A8 A(1,4,5) 109.4485 estimate D2E/DX2 ! ! D1 D(4,1,2,3) 119.9996 estimate D2E/DX2 ! ! D2 D(6,1,2,3) -120.0024 estimate D2E/DX2 ! ! D3 D(7,1,2,3) 0.0004 estimate D2E/DX2 ! ! D4 D(2,1,4,5) 119.9996 estimate D2E/DX2 ! ! D5 D(6,1,4,5) 0.0006 estimate D2E/DX2 ! ! D6 D(7,1,4,5) -120.0021 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 30 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.749995 3 1 0 0.990093 0.000000 2.099605 4 8 0 -0.824946 -1.428871 -0.583332 5 1 0 -1.649821 -1.142701 -1.166597 6 8 0 -0.825014 1.428829 -0.583331 7 8 0 1.649924 -0.000012 -0.583290 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.749995 0.000000 3 H 2.321341 1.050005 0.000000 4 O 1.749995 2.857731 3.540365 0.000000 5 H 2.321341 3.540365 4.352354 1.050005 0.000000 6 O 1.749993 2.857729 3.540383 2.857700 2.762838 7 O 1.749993 2.857703 2.762843 2.857730 3.540382 6 7 6 O 0.000000 7 O 2.857779 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000001 0.032333 0.000000 2 8 0 1.313226 -0.978043 0.563084 3 1 0 2.176178 -0.775675 0.000170 4 8 0 -1.313225 -0.978012 -0.563140 5 1 0 -2.176176 -0.775677 -0.000214 6 8 0 -0.563148 1.042615 1.313267 7 8 0 0.563145 1.042694 -1.313207 --------------------------------------------------------------------- Rotational constants (GHZ): 3.8311888 3.6054130 3.5726516 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 249.2570135640 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 1.32D-03 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -697.966335942 A.U. after 16 cycles NFock= 16 Conv=0.88D-08 -V/T= 2.0029 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4845624482D-01 E2= -0.1469564593D+00 alpha-beta T2 = 0.2460017579D+00 E2= -0.7847351206D+00 beta-beta T2 = 0.4845624482D-01 E2= -0.1469564593D+00 ANorm= 0.1158841770D+01 E2 = -0.1078648039D+01 EUMP2 = -0.69904498398135D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=9.05D-03 Max=1.39D-01 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.06D-03 Max=3.34D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=9.99D-04 Max=1.10D-02 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.86D-04 Max=4.21D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.54D-04 Max=1.79D-03 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.59D-05 Max=6.74D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.38D-05 Max=2.28D-04 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.66D-06 Max=1.05D-04 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.79D-06 Max=3.32D-05 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.67D-07 Max=3.27D-06 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=6.56D-08 Max=1.38D-06 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.89D-08 Max=2.38D-07 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=4.73D-09 Max=6.85D-08 NDo= 1 LinEq1: Iter= 13 NonCon= 1 RMS=1.42D-09 Max=2.19D-08 NDo= 1 LinEq1: Iter= 14 NonCon= 1 RMS=3.77D-10 Max=4.19D-09 NDo= 1 LinEq1: Iter= 15 NonCon= 0 RMS=8.91D-11 Max=9.13D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 15 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -92.28908 -20.70136 -20.70135 -20.61305 -20.61303 Alpha occ. eigenvalues -- -9.25541 -6.93897 -6.93841 -6.93668 -1.46149 Alpha occ. eigenvalues -- -1.41192 -1.30793 -1.26459 -0.96700 -0.77014 Alpha occ. eigenvalues -- -0.73920 -0.69771 -0.65205 -0.62371 -0.60202 Alpha occ. eigenvalues -- -0.54819 -0.50748 -0.50616 -0.49752 -0.48296 Alpha virt. eigenvalues -- 0.01391 0.06745 0.08378 0.09716 0.10321 Alpha virt. eigenvalues -- 0.12533 0.12990 0.13879 0.19011 0.20599 Alpha virt. eigenvalues -- 0.22821 0.23268 0.25060 0.26852 0.29491 Alpha virt. eigenvalues -- 0.30144 0.32200 0.33032 0.33729 0.36447 Alpha virt. eigenvalues -- 0.36451 0.37956 0.38093 0.38954 0.40306 Alpha virt. eigenvalues -- 0.42372 0.45290 0.46183 0.51333 0.52096 Alpha virt. eigenvalues -- 0.55645 0.60350 0.61342 0.80664 0.81816 Alpha virt. eigenvalues -- 0.85030 1.00441 1.18090 1.18847 1.20777 Alpha virt. eigenvalues -- 1.24497 1.26283 1.26420 1.30929 1.31423 Alpha virt. eigenvalues -- 1.32443 1.35122 1.37280 1.37741 1.39188 Alpha virt. eigenvalues -- 1.41054 1.48215 1.50816 1.64091 1.66970 Alpha virt. eigenvalues -- 1.67706 1.74104 1.75254 1.75391 1.76356 Alpha virt. eigenvalues -- 1.78877 1.79896 1.80956 1.81880 1.85803 Alpha virt. eigenvalues -- 1.87908 1.89310 1.90793 1.95734 2.03295 Alpha virt. eigenvalues -- 2.11228 2.11739 2.19195 2.19495 2.23969 Alpha virt. eigenvalues -- 2.29333 2.31138 2.57908 2.67542 2.68500 Alpha virt. eigenvalues -- 2.69051 2.71668 2.76051 2.76133 2.81995 Alpha virt. eigenvalues -- 2.84571 2.87329 3.04286 3.11248 5.39653 Alpha virt. eigenvalues -- 5.43079 5.45879 5.47464 5.51290 5.52643 Alpha virt. eigenvalues -- 5.53661 5.59962 5.63103 5.63956 5.86188 Alpha virt. eigenvalues -- 5.87736 7.16952 7.20595 7.22632 7.23429 Alpha virt. eigenvalues -- 7.24057 7.25300 7.27228 7.28609 7.29218 Alpha virt. eigenvalues -- 7.32780 7.34069 7.39520 7.39753 7.44258 Alpha virt. eigenvalues -- 7.44803 7.49561 7.53336 7.66552 7.69410 Alpha virt. eigenvalues -- 7.70785 8.58507 18.36404 18.36461 18.41084 Alpha virt. eigenvalues -- 51.45460 51.45855 51.52391 51.53313 192.26596 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 S 14.094611 0.209877 -0.001175 0.209878 -0.001175 0.272143 2 O 0.209877 7.926565 0.288016 0.012266 -0.001546 -0.009737 3 H -0.001175 0.288016 0.342270 -0.001546 0.000048 -0.000744 4 O 0.209878 0.012266 -0.001546 7.926565 0.288016 -0.025633 5 H -0.001175 -0.001546 0.000048 0.288016 0.342269 0.004030 6 O 0.272143 -0.009737 -0.000744 -0.025633 0.004030 8.231102 7 O 0.272143 -0.025633 0.004030 -0.009737 -0.000744 -0.030017 7 1 S 0.272143 2 O -0.025633 3 H 0.004030 4 O -0.009737 5 H -0.000744 6 O -0.030017 7 O 8.231101 Mulliken charges: 1 1 S 0.943699 2 O -0.399807 3 H 0.369101 4 O -0.399808 5 H 0.369102 6 O -0.441144 7 O -0.441143 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 0.943699 2 O -0.030706 4 O -0.030706 6 O -0.441144 7 O -0.441143 Electronic spatial extent (au): = 467.8988 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= -3.4610 Z= -0.0001 Tot= 3.4610 Quadrupole moment (field-independent basis, Debye-Ang): XX= -22.8513 YY= -40.7554 ZZ= -43.5079 XY= 0.0000 XZ= -0.4103 YZ= 0.0001 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 12.8536 YY= -5.0505 ZZ= -7.8031 XY= 0.0000 XZ= -0.4103 YZ= 0.0001 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -3.3946 ZZZ= -0.0004 XYY= -0.0003 XXY= -11.9075 XXZ= -0.0003 XZZ= 0.0003 YZZ= -4.6958 YYZ= 0.0002 XYZ= 4.9588 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -95.9314 YYYY= -184.3351 ZZZZ= -186.2592 XXXY= 0.0001 XXXZ= -3.1795 YYYX= 0.0002 YYYZ= 0.0000 ZZZX= 1.8954 ZZZY= 0.0002 XXYY= -56.1888 XXZZ= -66.4823 YYZZ= -60.4999 XXYZ= 0.0003 YYXZ= -1.8549 ZZXY= -0.0002 N-N= 2.492570135640D+02 E-N=-2.154362872767D+03 KE= 6.959709532115D+02 Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.073971854 0.128126739 -0.104614755 2 8 0.028940040 -0.009946212 -0.036751500 3 1 -0.043776367 -0.002078790 -0.030900009 4 8 -0.007711153 0.046715664 0.006729348 5 1 0.042550682 -0.000044169 0.032633486 6 8 0.066939132 -0.148338501 0.065009143 7 8 -0.160914187 -0.014434730 0.067894287 ------------------------------------------------------------------- Cartesian Forces: Max 0.160914187 RMS 0.070569282 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.174342423 RMS 0.063283996 Search for a local minimum. Step number 1 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30488 R2 0.00000 0.30488 R3 0.00000 0.00000 0.30488 R4 0.00000 0.00000 0.00000 0.30488 R5 0.00000 0.00000 0.00000 0.00000 0.39876 R6 0.00000 0.00000 0.00000 0.00000 0.00000 A1 0.00000 0.00000 0.00000 0.00000 0.00000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 A7 0.00000 0.00000 0.00000 0.00000 0.00000 A8 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 D6 0.00000 0.00000 0.00000 0.00000 0.00000 R6 A1 A2 A3 A4 R6 0.39876 A1 0.00000 0.25000 A2 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.25000 A4 0.00000 0.00000 0.00000 0.00000 0.25000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 A7 0.00000 0.00000 0.00000 0.00000 0.00000 A8 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 D6 0.00000 0.00000 0.00000 0.00000 0.00000 A5 A6 A7 A8 D1 A5 0.25000 A6 0.00000 0.25000 A7 0.00000 0.00000 0.16000 A8 0.00000 0.00000 0.00000 0.16000 D1 0.00000 0.00000 0.00000 0.00000 0.00635 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 D4 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 D6 0.00000 0.00000 0.00000 0.00000 0.00000 D2 D3 D4 D5 D6 D2 0.00635 D3 0.00000 0.00635 D4 0.00000 0.00000 0.00635 D5 0.00000 0.00000 0.00000 0.00635 D6 0.00000 0.00000 0.00000 0.00000 0.00635 ITU= 0 Eigenvalues --- 0.00635 0.00635 0.12101 0.13630 0.16000 Eigenvalues --- 0.16000 0.18355 0.22293 0.25000 0.30488 Eigenvalues --- 0.30488 0.30488 0.30488 0.39876 0.39876 RFO step: Lambda=-1.71201376D-01 EMin= 6.34790257D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.501 Iteration 1 RMS(Cart)= 0.08434805 RMS(Int)= 0.00130625 Iteration 2 RMS(Cart)= 0.00144591 RMS(Int)= 0.00023272 Iteration 3 RMS(Cart)= 0.00000150 RMS(Int)= 0.00023272 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00023272 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.30701 -0.06765 0.00000 -0.07124 -0.07124 3.23578 R2 3.30701 -0.06765 0.00000 -0.07124 -0.07124 3.23578 R3 3.30701 -0.17434 0.00000 -0.18358 -0.18358 3.12343 R4 3.30701 -0.17434 0.00000 -0.18358 -0.18358 3.12343 R5 1.98422 -0.05157 0.00000 -0.04536 -0.04536 1.93887 R6 1.98422 -0.05157 0.00000 -0.04536 -0.04536 1.93887 A1 1.91063 -0.03338 0.00000 -0.04701 -0.04749 1.86314 A2 1.91063 0.00378 0.00000 0.00287 0.00242 1.91306 A3 1.91061 -0.00081 0.00000 -0.00297 -0.00337 1.90724 A4 1.91061 -0.00081 0.00000 -0.00297 -0.00337 1.90723 A5 1.91063 0.00378 0.00000 0.00287 0.00242 1.91306 A6 1.91069 0.02744 0.00000 0.04721 0.04703 1.95771 A7 1.91024 -0.02889 0.00000 -0.04373 -0.04373 1.86650 A8 1.91024 -0.02889 0.00000 -0.04373 -0.04373 1.86650 D1 2.09439 -0.00036 0.00000 -0.00247 -0.00240 2.09199 D2 -2.09444 -0.01948 0.00000 -0.03314 -0.03303 -2.12747 D3 0.00001 0.01595 0.00000 0.02462 0.02445 0.02445 D4 2.09439 -0.00036 0.00000 -0.00247 -0.00240 2.09199 D5 0.00001 0.01595 0.00000 0.02462 0.02445 0.02446 D6 -2.09443 -0.01948 0.00000 -0.03314 -0.03303 -2.12746 Item Value Threshold Converged? Maximum Force 0.174342 0.000450 NO RMS Force 0.063284 0.000300 NO Maximum Displacement 0.167580 0.001800 NO RMS Displacement 0.084318 0.001200 NO Predicted change in Energy=-7.230161D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.011537 0.019983 -0.016316 2 8 0 -0.017278 -0.010352 1.695471 3 1 0 0.959020 -0.014044 2.010925 4 8 0 -0.793701 -1.394328 -0.548559 5 1 0 -1.595411 -1.088234 -1.110922 6 8 0 -0.804215 1.350160 -0.561365 7 8 0 1.580284 -0.005939 -0.536182 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.712298 0.000000 3 H 2.237988 1.026004 0.000000 4 O 1.712298 2.748434 3.395316 0.000000 5 H 2.237987 3.395316 4.174318 1.026004 0.000000 6 O 1.652846 2.750195 3.403929 2.744538 2.621787 7 O 1.652846 2.744540 2.621791 2.750196 3.403928 6 7 6 O 0.000000 7 O 2.743260 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.064075 0.000001 2 8 0 1.252238 -0.957451 0.565999 3 1 0 2.087139 -0.743611 0.009315 4 8 0 -1.252236 -0.957430 -0.566035 5 1 0 -2.087137 -0.743611 -0.009344 6 8 0 -0.570100 0.986291 1.247559 7 8 0 0.570098 0.986343 -1.247520 --------------------------------------------------------------------- Rotational constants (GHZ): 4.1524849 3.9062439 3.8575659 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 259.2096486799 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 1.01D-03 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999953 0.000005 0.009661 0.000000 Ang= 1.11 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.046688580 A.U. after 14 cycles NFock= 14 Conv=0.58D-08 -V/T= 2.0027 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.10692732D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4731903748D-01 E2= -0.1484162708D+00 alpha-beta T2 = 0.2362012077D+00 E2= -0.7823334910D+00 beta-beta T2 = 0.4731903748D-01 E2= -0.1484162708D+00 ANorm= 0.1153620077D+01 E2 = -0.1079166033D+01 EUMP2 = -0.69912585461223D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=8.00D-03 Max=1.53D-01 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.12D-03 Max=3.64D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=1.03D-03 Max=1.44D-02 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=3.86D-04 Max=4.11D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=1.31D-04 Max=1.32D-03 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=4.32D-05 Max=5.35D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=1.98D-05 Max=1.91D-04 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=3.91D-06 Max=3.43D-05 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=7.11D-07 Max=1.01D-05 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=1.75D-07 Max=1.66D-06 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=3.96D-08 Max=5.38D-07 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=9.34D-09 Max=1.13D-07 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.32D-09 Max=2.76D-08 NDo= 1 LinEq1: Iter= 13 NonCon= 1 RMS=5.23D-10 Max=5.89D-09 NDo= 1 LinEq1: Iter= 14 NonCon= 1 RMS=1.34D-10 Max=1.41D-09 NDo= 1 LinEq1: Iter= 15 NonCon= 0 RMS=7.74D-11 Max=9.46D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 15 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.064684277 0.112039525 -0.091479644 2 8 0.023491509 -0.008891592 -0.035849060 3 1 -0.033469826 -0.001277810 -0.020936596 4 8 -0.003895345 0.042833204 0.008135850 5 1 0.031445259 -0.002228884 0.023799853 6 8 0.061159415 -0.130647129 0.057729199 7 8 -0.143415288 -0.011827313 0.058600397 ------------------------------------------------------------------- Cartesian Forces: Max 0.143415288 RMS 0.061852976 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.154364089 RMS 0.054916022 Search for a local minimum. Step number 2 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -8.09D-02 DEPred=-7.23D-02 R= 1.12D+00 TightC=F SS= 1.41D+00 RLast= 3.06D-01 DXNew= 5.0454D-01 9.1676D-01 Trust test= 1.12D+00 RLast= 3.06D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.29846 R2 -0.00641 0.29846 R3 -0.02533 -0.02533 0.22394 R4 -0.02533 -0.02533 -0.08094 0.22394 R5 -0.00148 -0.00148 -0.01422 -0.01422 0.40210 R6 -0.00148 -0.00148 -0.01422 -0.01422 0.00334 A1 -0.00620 -0.00620 -0.01863 -0.01863 -0.00399 A2 -0.00051 -0.00051 -0.00052 -0.00052 -0.00078 A3 -0.00194 -0.00194 -0.00400 -0.00400 -0.00206 A4 -0.00194 -0.00194 -0.00400 -0.00400 -0.00206 A5 -0.00051 -0.00051 -0.00052 -0.00052 -0.00078 A6 0.00789 0.00789 0.02157 0.02157 0.00603 A7 0.00446 0.00446 0.00346 0.00346 0.00725 A8 0.00446 0.00446 0.00346 0.00346 0.00725 D1 0.00047 0.00047 0.00083 0.00083 0.00056 D2 0.00142 0.00142 0.00239 0.00239 0.00174 D3 -0.00101 -0.00101 -0.00170 -0.00170 -0.00124 D4 0.00047 0.00047 0.00083 0.00083 0.00056 D5 -0.00101 -0.00101 -0.00170 -0.00170 -0.00124 D6 0.00142 0.00142 0.00239 0.00239 0.00174 R6 A1 A2 A3 A4 R6 0.40210 A1 -0.00399 0.24580 A2 -0.00078 -0.00004 0.25008 A3 -0.00206 -0.00075 0.00013 0.25012 A4 -0.00206 -0.00075 0.00013 0.00012 0.25012 A5 -0.00078 -0.00004 0.00008 0.00013 0.00013 A6 0.00603 0.00469 -0.00012 0.00054 0.00054 A7 0.00725 -0.00002 -0.00076 -0.00138 -0.00138 A8 0.00725 -0.00002 -0.00076 -0.00138 -0.00138 D1 0.00056 0.00014 -0.00004 -0.00006 -0.00006 D2 0.00174 0.00039 -0.00014 -0.00019 -0.00019 D3 -0.00124 -0.00028 0.00010 0.00014 0.00014 D4 0.00056 0.00014 -0.00004 -0.00006 -0.00006 D5 -0.00124 -0.00028 0.00010 0.00014 0.00014 D6 0.00174 0.00039 -0.00014 -0.00019 -0.00019 A5 A6 A7 A8 D1 A5 0.25008 A6 -0.00012 0.24511 A7 -0.00076 0.00162 0.16741 A8 -0.00076 0.00162 0.00741 0.16741 D1 -0.00004 -0.00006 0.00044 0.00044 0.00637 D2 -0.00014 -0.00013 0.00140 0.00140 0.00007 D3 0.00010 0.00009 -0.00100 -0.00100 -0.00005 D4 -0.00004 -0.00006 0.00044 0.00044 0.00002 D5 0.00010 0.00009 -0.00100 -0.00100 -0.00005 D6 -0.00014 -0.00013 0.00140 0.00140 0.00007 D2 D3 D4 D5 D6 D2 0.00658 D3 -0.00016 0.00646 D4 0.00007 -0.00005 0.00637 D5 -0.00016 0.00012 -0.00005 0.00646 D6 0.00023 -0.00016 0.00007 -0.00016 0.00658 ITU= 1 0 Use linear search instead of GDIIS. Linear search step of 0.600 exceeds DXMaxT= 0.505 but not scaled. Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.14360162 RMS(Int)= 0.05435681 Iteration 2 RMS(Cart)= 0.05316945 RMS(Int)= 0.00144537 Iteration 3 RMS(Cart)= 0.00018059 RMS(Int)= 0.00143721 Iteration 4 RMS(Cart)= 0.00000050 RMS(Int)= 0.00143721 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.23578 -0.05642 -0.14247 0.00000 -0.14247 3.09330 R2 3.23578 -0.05642 -0.14247 0.00000 -0.14247 3.09330 R3 3.12343 -0.15436 -0.36716 0.00000 -0.36716 2.75626 R4 3.12343 -0.15436 -0.36716 0.00000 -0.36716 2.75626 R5 1.93887 -0.03828 -0.09071 0.00000 -0.09071 1.84815 R6 1.93887 -0.03828 -0.09071 0.00000 -0.09071 1.84815 A1 1.86314 -0.02998 -0.09499 0.00000 -0.09784 1.76530 A2 1.91306 0.00276 0.00485 0.00000 0.00210 1.91516 A3 1.90724 -0.00210 -0.00675 0.00000 -0.00917 1.89806 A4 1.90723 -0.00210 -0.00674 0.00000 -0.00917 1.89806 A5 1.91306 0.00276 0.00485 0.00000 0.00210 1.91516 A6 1.95771 0.02586 0.09405 0.00000 0.09287 2.05058 A7 1.86650 -0.01862 -0.08746 0.00000 -0.08746 1.77904 A8 1.86650 -0.01862 -0.08746 0.00000 -0.08746 1.77904 D1 2.09199 0.00013 -0.00479 0.00000 -0.00435 2.08764 D2 -2.12747 -0.01786 -0.06606 0.00000 -0.06525 -2.19271 D3 0.02445 0.01479 0.04889 0.00000 0.04763 0.07208 D4 2.09199 0.00013 -0.00479 0.00000 -0.00435 2.08764 D5 0.02446 0.01479 0.04889 0.00000 0.04763 0.07209 D6 -2.12746 -0.01786 -0.06606 0.00000 -0.06525 -2.19271 Item Value Threshold Converged? Maximum Force 0.154364 0.000450 NO RMS Force 0.054916 0.000300 NO Maximum Displacement 0.328990 0.001800 NO RMS Displacement 0.168348 0.001200 NO Predicted change in Energy=-1.259000D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.032377 0.056082 -0.045790 2 8 0 -0.050277 -0.033614 1.586564 3 1 0 0.895138 -0.040199 1.836831 4 8 0 -0.733793 -1.324457 -0.477708 5 1 0 -1.485854 -0.982969 -1.001422 6 8 0 -0.749907 1.193479 -0.516675 7 8 0 1.432552 -0.011077 -0.448748 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.636905 0.000000 3 H 2.073135 0.978001 0.000000 4 O 1.636905 2.528772 3.108026 0.000000 5 H 2.073134 3.108026 3.822776 0.978001 0.000000 6 O 1.458552 2.533546 3.125240 2.518288 2.348089 7 O 1.458552 2.518289 2.348091 2.533546 3.125239 6 7 6 O 0.000000 7 O 2.493731 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.122620 0.000000 2 8 0 1.144301 -0.916989 0.537815 3 1 0 1.911275 -0.680176 -0.020896 4 8 0 -1.144300 -0.916986 -0.537823 5 1 0 -1.911273 -0.680177 0.020889 6 8 0 -0.544120 0.879383 1.121881 7 8 0 0.544118 0.879395 -1.121873 --------------------------------------------------------------------- Rotational constants (GHZ): 4.9282020 4.6691037 4.5221828 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 282.2479398468 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 4.97D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999974 0.000008 0.007264 0.000000 Ang= 0.83 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.181296028 A.U. after 14 cycles NFock= 14 Conv=0.43D-08 -V/T= 2.0014 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.17725840D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4145935540D-01 E2= -0.1447287651D+00 alpha-beta T2 = 0.2054115103D+00 E2= -0.7560966494D+00 beta-beta T2 = 0.4145935540D-01 E2= -0.1447287651D+00 ANorm= 0.1135046352D+01 E2 = -0.1045554180D+01 EUMP2 = -0.69922685020727D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.70D-03 Max=6.57D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.35D-03 Max=1.45D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=5.60D-04 Max=6.29D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=2.02D-04 Max=2.09D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=5.68D-05 Max=6.69D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.76D-05 Max=2.02D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=5.96D-06 Max=7.20D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=1.16D-06 Max=1.37D-05 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=2.50D-07 Max=2.43D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=4.96D-08 Max=5.33D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=1.20D-08 Max=1.47D-07 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=2.38D-09 Max=3.00D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=4.55D-10 Max=4.59D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=9.16D-11 Max=8.78D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.014490645 0.025099471 -0.020493524 2 8 0.006186871 -0.002948451 -0.024555452 3 1 -0.003808185 -0.001149809 0.003743912 4 8 0.005748574 0.023621369 0.007676099 5 1 0.000110072 -0.005255583 0.001486002 6 8 0.004663652 -0.029733886 0.015095285 7 8 -0.027391629 -0.009633112 0.017047678 ------------------------------------------------------------------- Cartesian Forces: Max 0.029733886 RMS 0.015254899 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.030561595 RMS 0.013835478 Search for a local minimum. Step number 3 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.29847 R2 -0.00641 0.29847 R3 -0.00678 -0.00678 0.32110 R4 -0.00678 -0.00678 0.01622 0.32110 R5 -0.00355 -0.00355 0.00052 0.00052 0.39757 R6 -0.00355 -0.00355 0.00052 0.00052 -0.00119 A1 -0.00452 -0.00452 -0.00665 -0.00665 -0.00302 A2 -0.00081 -0.00081 -0.00267 -0.00267 -0.00095 A3 -0.00182 -0.00182 -0.00521 -0.00521 -0.00176 A4 -0.00182 -0.00182 -0.00521 -0.00521 -0.00176 A5 -0.00081 -0.00081 -0.00267 -0.00267 -0.00095 A6 0.00698 0.00698 0.01607 0.01607 0.00539 A7 0.00278 0.00278 0.01456 0.01456 0.00367 A8 0.00278 0.00278 0.01456 0.01456 0.00367 D1 0.00015 0.00015 0.00051 0.00051 0.00015 D2 0.00192 0.00192 0.00679 0.00679 0.00194 D3 -0.00173 -0.00173 -0.00608 -0.00608 -0.00174 D4 0.00015 0.00015 0.00051 0.00051 0.00015 D5 -0.00173 -0.00173 -0.00608 -0.00608 -0.00174 D6 0.00192 0.00192 0.00679 0.00679 0.00194 R6 A1 A2 A3 A4 R6 0.39757 A1 -0.00302 0.24717 A2 -0.00095 -0.00028 0.25012 A3 -0.00176 -0.00084 0.00015 0.25010 A4 -0.00176 -0.00084 0.00015 0.00010 0.25010 A5 -0.00095 -0.00028 0.00012 0.00015 0.00015 A6 0.00539 0.00404 -0.00001 0.00060 0.00060 A7 0.00367 0.00069 -0.00088 -0.00114 -0.00114 A8 0.00367 0.00069 -0.00088 -0.00114 -0.00114 D1 0.00015 0.00005 -0.00003 -0.00003 -0.00003 D2 0.00194 0.00087 -0.00023 -0.00021 -0.00021 D3 -0.00174 -0.00080 0.00019 0.00018 0.00018 D4 0.00015 0.00005 -0.00003 -0.00003 -0.00003 D5 -0.00174 -0.00080 0.00019 0.00018 0.00018 D6 0.00194 0.00087 -0.00023 -0.00021 -0.00021 A5 A6 A7 A8 D1 A5 0.25012 A6 -0.00001 0.24541 A7 -0.00088 0.00115 0.16458 A8 -0.00088 0.00115 0.00458 0.16458 D1 -0.00003 -0.00003 0.00012 0.00012 0.00635 D2 -0.00023 -0.00037 0.00154 0.00154 0.00003 D3 0.00019 0.00034 -0.00137 -0.00137 -0.00003 D4 -0.00003 -0.00003 0.00012 0.00012 0.00000 D5 0.00019 0.00034 -0.00137 -0.00137 -0.00003 D6 -0.00023 -0.00037 0.00154 0.00154 0.00003 D2 D3 D4 D5 D6 D2 0.00674 D3 -0.00035 0.00666 D4 0.00003 -0.00003 0.00635 D5 -0.00035 0.00031 -0.00003 0.00666 D6 0.00039 -0.00035 0.00003 -0.00035 0.00674 ITU= 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00635 0.00635 0.14092 0.14502 0.16000 Eigenvalues --- 0.16311 0.16397 0.21181 0.25030 0.28973 Eigenvalues --- 0.30488 0.30488 0.34540 0.39730 0.39876 RFO step: Lambda=-7.08388310D-03 EMin= 6.34790257D-03 Quartic linear search produced a step of 0.16564. Iteration 1 RMS(Cart)= 0.05690312 RMS(Int)= 0.00346472 Iteration 2 RMS(Cart)= 0.00370999 RMS(Int)= 0.00102887 Iteration 3 RMS(Cart)= 0.00000420 RMS(Int)= 0.00102885 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00102885 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.09330 -0.02065 -0.02360 -0.03577 -0.05936 3.03394 R2 3.09330 -0.02065 -0.02360 -0.03577 -0.05936 3.03394 R3 2.75626 -0.03056 -0.06082 -0.00286 -0.06367 2.69259 R4 2.75626 -0.03056 -0.06082 -0.00286 -0.06367 2.69259 R5 1.84815 -0.00272 -0.01503 0.01264 -0.00239 1.84577 R6 1.84815 -0.00272 -0.01503 0.01264 -0.00239 1.84577 A1 1.76530 -0.01260 -0.01621 -0.04717 -0.06530 1.70000 A2 1.91516 -0.00035 0.00035 -0.00718 -0.00875 1.90641 A3 1.89806 -0.00485 -0.00152 -0.02619 -0.02926 1.86880 A4 1.89806 -0.00485 -0.00152 -0.02619 -0.02926 1.86880 A5 1.91516 -0.00035 0.00035 -0.00718 -0.00875 1.90641 A6 2.05058 0.01837 0.01538 0.09295 0.10800 2.15858 A7 1.77904 0.00860 -0.01449 0.09401 0.07952 1.85856 A8 1.77904 0.00860 -0.01449 0.09401 0.07952 1.85856 D1 2.08764 0.00064 -0.00072 -0.01148 -0.01174 2.07591 D2 -2.19271 -0.01109 -0.01081 -0.06671 -0.07668 -2.26939 D3 0.07208 0.00880 0.00789 0.02870 0.03529 0.10737 D4 2.08764 0.00064 -0.00072 -0.01148 -0.01173 2.07591 D5 0.07209 0.00880 0.00789 0.02870 0.03529 0.10737 D6 -2.19271 -0.01109 -0.01081 -0.06671 -0.07668 -2.26939 Item Value Threshold Converged? Maximum Force 0.030562 0.000450 NO RMS Force 0.013835 0.000300 NO Maximum Displacement 0.131251 0.001800 NO RMS Displacement 0.057708 0.001200 NO Predicted change in Energy=-8.134842D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.056120 0.097206 -0.079368 2 8 0 -0.044467 -0.039700 1.517108 3 1 0 0.872882 -0.074135 1.850725 4 8 0 -0.708439 -1.264392 -0.452326 5 1 0 -1.497159 -1.007165 -0.967853 6 8 0 -0.771654 1.173582 -0.511140 7 8 0 1.432953 -0.028152 -0.424095 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.605490 0.000000 3 H 2.102788 0.976737 0.000000 4 O 1.605490 2.412344 3.036665 0.000000 5 H 2.102788 3.036666 3.798951 0.976737 0.000000 6 O 1.424858 2.472781 3.136830 2.439503 2.343203 7 O 1.424858 2.439503 2.343203 2.472781 3.136830 6 7 6 O 0.000000 7 O 2.512376 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.159964 0.000000 2 8 0 0.990428 -0.899633 0.688407 3 1 0 1.874833 -0.742096 0.304969 4 8 0 -0.990429 -0.899635 -0.688405 5 1 0 -1.874834 -0.742095 -0.304968 6 8 0 -0.744512 0.832433 1.011784 7 8 0 0.744513 0.832431 -1.011786 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1619832 4.8457556 4.7535131 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 288.0932361149 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 3.32D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.996170 0.000003 0.087433 0.000001 Ang= 10.03 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.198082952 A.U. after 12 cycles NFock= 12 Conv=0.27D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.22541736D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3997041868D-01 E2= -0.1432650934D+00 alpha-beta T2 = 0.1981889036D+00 E2= -0.7482288036D+00 beta-beta T2 = 0.3997041868D-01 E2= -0.1432650934D+00 ANorm= 0.1130544002D+01 E2 = -0.1034758990D+01 EUMP2 = -0.69923284194242D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.29D-03 Max=6.07D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.17D-03 Max=1.24D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.71D-04 Max=4.87D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.66D-04 Max=1.74D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.73D-05 Max=6.33D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.38D-05 Max=1.46D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.49D-06 Max=4.05D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=8.81D-07 Max=1.11D-05 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=2.28D-07 Max=2.93D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=4.65D-08 Max=5.75D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=9.38D-09 Max=9.76D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.71D-09 Max=1.71D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=3.17D-10 Max=2.88D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.74D-11 Max=5.19D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.007510116 -0.013008174 0.010621099 2 8 0.004918844 0.003665030 -0.000821054 3 1 -0.005010144 -0.000477760 -0.001480288 4 8 -0.000776220 0.003510353 -0.005037569 5 1 0.003762118 -0.001683937 0.003245305 6 8 -0.003846304 0.008297913 -0.002348022 7 8 0.008461822 -0.000303425 -0.004179470 ------------------------------------------------------------------- Cartesian Forces: Max 0.013008174 RMS 0.005556606 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.009214497 RMS 0.003934389 Search for a local minimum. Step number 4 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -5.99D-03 DEPred=-8.13D-03 R= 7.37D-01 TightC=F SS= 1.41D+00 RLast= 2.45D-01 DXNew= 8.4853D-01 7.3566D-01 Trust test= 7.37D-01 RLast= 2.45D-01 DXMaxT set to 7.36D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.29721 R2 -0.00767 0.29721 R3 0.01528 0.01528 0.39775 R4 0.01528 0.01528 0.09287 0.39775 R5 -0.00586 -0.00586 -0.00532 -0.00532 0.39797 R6 -0.00586 -0.00586 -0.00532 -0.00532 -0.00079 A1 -0.00425 -0.00425 0.01727 0.01727 -0.00539 A2 -0.00651 -0.00651 -0.01221 -0.01221 -0.00047 A3 -0.00363 -0.00363 0.00131 0.00131 -0.00256 A4 -0.00363 -0.00363 0.00131 0.00131 -0.00256 A5 -0.00651 -0.00651 -0.01221 -0.01221 -0.00047 A6 0.01833 0.01833 0.00270 0.00270 0.00767 A7 0.01006 0.01006 0.01256 0.01256 0.00447 A8 0.01006 0.01006 0.01256 0.01256 0.00447 D1 -0.00288 -0.00288 -0.00590 -0.00590 0.00054 D2 0.01544 0.01544 0.03897 0.03897 -0.00016 D3 -0.01236 -0.01236 -0.03131 -0.03131 -0.00010 D4 -0.00288 -0.00288 -0.00590 -0.00590 0.00054 D5 -0.01236 -0.01236 -0.03131 -0.03131 -0.00010 D6 0.01544 0.01544 0.03897 0.03897 -0.00016 R6 A1 A2 A3 A4 R6 0.39797 A1 -0.00539 0.24889 A2 -0.00047 -0.00582 0.25016 A3 -0.00256 -0.00201 -0.00209 0.24887 A4 -0.00256 -0.00201 -0.00209 -0.00113 0.24887 A5 -0.00047 -0.00582 0.00016 -0.00209 -0.00209 A6 0.00767 0.01307 0.00755 0.00682 0.00682 A7 0.00447 0.00689 0.00241 0.00250 0.00250 A8 0.00447 0.00689 0.00241 0.00250 0.00250 D1 0.00054 -0.00297 0.00031 -0.00114 -0.00114 D2 -0.00016 0.01461 -0.00258 0.00459 0.00459 D3 -0.00010 -0.01160 0.00203 -0.00360 -0.00360 D4 0.00054 -0.00297 0.00031 -0.00114 -0.00114 D5 -0.00010 -0.01160 0.00203 -0.00360 -0.00360 D6 -0.00016 0.01461 -0.00258 0.00459 0.00459 A5 A6 A7 A8 D1 A5 0.25016 A6 0.00755 0.21738 A7 0.00241 -0.01421 0.15651 A8 0.00241 -0.01421 -0.00349 0.15651 D1 0.00031 0.00345 0.00151 0.00151 0.00670 D2 -0.00258 -0.01450 -0.00371 -0.00371 -0.00200 D3 0.00203 0.01148 0.00277 0.00277 0.00156 D4 0.00031 0.00345 0.00151 0.00151 0.00035 D5 0.00203 0.01148 0.00277 0.00277 0.00156 D6 -0.00258 -0.01450 -0.00371 -0.00371 -0.00200 D2 D3 D4 D5 D6 D2 0.01786 D3 -0.00905 0.01347 D4 -0.00200 0.00156 0.00670 D5 -0.00905 0.00712 0.00156 0.01347 D6 0.01152 -0.00905 -0.00200 -0.00905 0.01786 ITU= 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00634 0.00635 0.14353 0.15255 0.15733 Eigenvalues --- 0.16000 0.16411 0.20941 0.24999 0.28722 Eigenvalues --- 0.30488 0.30488 0.39708 0.39876 0.51849 RFO step: Lambda=-7.32911070D-04 EMin= 6.34092194D-03 Quartic linear search produced a step of -0.10406. Iteration 1 RMS(Cart)= 0.02540416 RMS(Int)= 0.00093606 Iteration 2 RMS(Cart)= 0.00086766 RMS(Int)= 0.00008732 Iteration 3 RMS(Cart)= 0.00000074 RMS(Int)= 0.00008732 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.03394 -0.00255 0.00618 -0.01885 -0.01267 3.02126 R2 3.03394 -0.00255 0.00618 -0.01885 -0.01267 3.02126 R3 2.69259 0.00921 0.00663 0.00981 0.01644 2.70903 R4 2.69259 0.00921 0.00663 0.00981 0.01644 2.70903 R5 1.84577 -0.00519 0.00025 -0.01289 -0.01264 1.83313 R6 1.84577 -0.00519 0.00025 -0.01289 -0.01264 1.83313 A1 1.70000 0.00559 0.00680 0.01044 0.01741 1.71740 A2 1.90641 -0.00272 0.00091 -0.01206 -0.01102 1.89539 A3 1.86880 0.00175 0.00304 0.00385 0.00705 1.87586 A4 1.86880 0.00175 0.00304 0.00385 0.00705 1.87586 A5 1.90641 -0.00272 0.00091 -0.01206 -0.01102 1.89539 A6 2.15858 -0.00186 -0.01124 0.00688 -0.00435 2.15424 A7 1.85856 0.00069 -0.00827 0.01370 0.00542 1.86398 A8 1.85856 0.00069 -0.00827 0.01370 0.00542 1.86398 D1 2.07591 -0.00165 0.00122 -0.06841 -0.06715 2.00875 D2 -2.26939 0.00188 0.00798 -0.06307 -0.05521 -2.32460 D3 0.10737 -0.00135 -0.00367 -0.06047 -0.06406 0.04331 D4 2.07591 -0.00165 0.00122 -0.06841 -0.06715 2.00876 D5 0.10737 -0.00135 -0.00367 -0.06047 -0.06406 0.04331 D6 -2.26939 0.00188 0.00798 -0.06307 -0.05521 -2.32460 Item Value Threshold Converged? Maximum Force 0.009214 0.000450 NO RMS Force 0.003934 0.000300 NO Maximum Displacement 0.063907 0.001800 NO RMS Displacement 0.025722 0.001200 NO Predicted change in Energy=-4.457237D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.056808 0.098399 -0.080342 2 8 0 -0.050125 -0.018271 1.510589 3 1 0 0.855700 -0.104077 1.846913 4 8 0 -0.689222 -1.262335 -0.464982 5 1 0 -1.501194 -1.013972 -0.934035 6 8 0 -0.773544 1.182708 -0.516084 7 8 0 1.441813 -0.025206 -0.429008 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.598783 0.000000 3 H 2.096076 0.970049 0.000000 4 O 1.598783 2.420541 3.012176 0.000000 5 H 2.096076 3.012177 3.757197 0.970049 0.000000 6 O 1.433556 2.464364 3.145474 2.447031 2.351502 7 O 1.433556 2.447031 2.351502 2.464364 3.145473 6 7 6 O 0.000000 7 O 2.524767 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.154105 0.000000 2 8 0 0.984653 -0.890572 0.703716 3 1 0 1.855685 -0.775627 0.292517 4 8 0 -0.984652 -0.890574 -0.703714 5 1 0 -1.855685 -0.775627 -0.292517 6 8 0 -0.748252 0.833423 1.016725 7 8 0 0.748251 0.833421 -1.016727 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1330450 4.8154200 4.7870037 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 287.8543963737 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 3.55D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999997 0.000000 0.002442 0.000000 Ang= -0.28 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.198485299 A.U. after 10 cycles NFock= 10 Conv=0.91D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.21082825D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4003460573D-01 E2= -0.1433216035D+00 alpha-beta T2 = 0.1982757034D+00 E2= -0.7482423210D+00 beta-beta T2 = 0.4003460573D-01 E2= -0.1433216035D+00 ANorm= 0.1130639162D+01 E2 = -0.1034885528D+01 EUMP2 = -0.69923337082687D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.33D-03 Max=6.25D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.24D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.81D-04 Max=5.04D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.71D-04 Max=1.74D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.85D-05 Max=6.21D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.40D-05 Max=1.43D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.71D-06 Max=4.02D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.42D-07 Max=9.53D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=2.34D-07 Max=2.06D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=4.69D-08 Max=4.60D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=9.78D-09 Max=1.12D-07 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.79D-09 Max=1.97D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=3.41D-10 Max=3.79D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=6.60D-11 Max=7.07D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.000160039 -0.000277209 0.000226305 2 8 -0.000648676 0.002899047 -0.000179758 3 1 0.001018717 -0.000870354 0.000810649 4 8 0.002190928 -0.000227699 -0.002001368 5 1 -0.001563783 -0.000073758 -0.000039788 6 8 0.001817220 -0.001649866 0.001040198 7 8 -0.002654367 0.000199839 0.000143763 ------------------------------------------------------------------- Cartesian Forces: Max 0.002899047 RMS 0.001327121 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.004356522 RMS 0.001542882 Search for a local minimum. Step number 5 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 5 DE= -5.29D-04 DEPred=-4.46D-04 R= 1.19D+00 TightC=F SS= 1.41D+00 RLast= 1.59D-01 DXNew= 1.2372D+00 4.7648D-01 Trust test= 1.19D+00 RLast= 1.59D-01 DXMaxT set to 7.36D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30555 R2 0.00067 0.30555 R3 -0.01326 -0.01326 0.48760 R4 -0.01326 -0.01326 0.18272 0.48760 R5 0.01079 0.01079 -0.05904 -0.05904 0.42986 R6 0.01079 0.01079 -0.05904 -0.05904 0.03110 A1 0.01461 0.01461 -0.01680 -0.01680 0.02004 A2 -0.01406 -0.01406 -0.00119 -0.00119 -0.00959 A3 -0.00355 -0.00355 0.00574 0.00574 -0.00428 A4 -0.00355 -0.00355 0.00574 0.00574 -0.00428 A5 -0.01406 -0.01406 -0.00119 -0.00119 -0.00959 A6 0.01782 0.01782 0.00082 0.00082 0.00807 A7 0.01396 0.01396 0.00571 0.00571 0.00964 A8 0.01396 0.01396 0.00571 0.00571 0.00964 D1 -0.00165 -0.00165 -0.01042 -0.01042 0.00311 D2 0.01372 0.01372 0.04501 0.04501 -0.00364 D3 -0.01784 -0.01784 -0.02094 -0.02094 -0.00768 D4 -0.00165 -0.00165 -0.01042 -0.01042 0.00311 D5 -0.01784 -0.01784 -0.02094 -0.02094 -0.00768 D6 0.01372 0.01372 0.04501 0.04501 -0.00364 R6 A1 A2 A3 A4 R6 0.42986 A1 0.02004 0.22135 A2 -0.00959 0.01165 0.24000 A3 -0.00428 -0.01140 0.00257 0.24762 A4 -0.00428 -0.01140 0.00257 -0.00238 0.24762 A5 -0.00959 0.01165 -0.01000 0.00257 0.00257 A6 0.00807 0.01741 0.00527 0.00744 0.00744 A7 0.00964 -0.00076 0.00697 0.00022 0.00022 A8 0.00964 -0.00076 0.00697 0.00022 0.00022 D1 0.00311 -0.00019 -0.00081 -0.00116 -0.00116 D2 -0.00364 0.01256 -0.00190 0.00492 0.00492 D3 -0.00768 -0.00525 -0.00224 -0.00112 -0.00112 D4 0.00311 -0.00019 -0.00081 -0.00116 -0.00116 D5 -0.00768 -0.00525 -0.00224 -0.00112 -0.00112 D6 -0.00364 0.01256 -0.00190 0.00492 0.00492 A5 A6 A7 A8 D1 A5 0.24000 A6 0.00527 0.21726 A7 0.00697 -0.01301 0.15454 A8 0.00697 -0.01301 -0.00546 0.15454 D1 -0.00081 0.00344 0.00212 0.00212 0.00690 D2 -0.00190 -0.01476 -0.00420 -0.00420 -0.00231 D3 -0.00224 0.01040 0.00464 0.00464 0.00076 D4 -0.00081 0.00344 0.00212 0.00212 0.00055 D5 -0.00224 0.01040 0.00464 0.00464 0.00076 D6 -0.00190 -0.01476 -0.00420 -0.00420 -0.00231 D2 D3 D4 D5 D6 D2 0.01834 D3 -0.00846 0.01208 D4 -0.00231 0.00076 0.00690 D5 -0.00846 0.00573 0.00076 0.01208 D6 0.01199 -0.00846 -0.00231 -0.00846 0.01834 ITU= 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00396 0.00635 0.13352 0.15461 0.15547 Eigenvalues --- 0.15778 0.16000 0.19067 0.23123 0.30488 Eigenvalues --- 0.30488 0.31704 0.39876 0.41779 0.73385 RFO step: Lambda=-5.06289932D-04 EMin= 3.95778689D-03 Quartic linear search produced a step of 0.24967. Iteration 1 RMS(Cart)= 0.04333122 RMS(Int)= 0.00312007 Iteration 2 RMS(Cart)= 0.00290057 RMS(Int)= 0.00008508 Iteration 3 RMS(Cart)= 0.00000864 RMS(Int)= 0.00008486 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00008486 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.02126 0.00045 -0.00316 -0.00486 -0.00803 3.01323 R2 3.02126 0.00045 -0.00316 -0.00486 -0.00803 3.01323 R3 2.70903 -0.00262 0.00410 -0.00557 -0.00147 2.70756 R4 2.70903 -0.00262 0.00410 -0.00557 -0.00147 2.70756 R5 1.83313 0.00131 -0.00316 -0.00050 -0.00366 1.82947 R6 1.83313 0.00131 -0.00316 -0.00050 -0.00366 1.82947 A1 1.71740 0.00436 0.00435 0.02894 0.03326 1.75066 A2 1.89539 -0.00165 -0.00275 -0.01276 -0.01562 1.87977 A3 1.87586 0.00016 0.00176 0.00415 0.00595 1.88180 A4 1.87586 0.00016 0.00176 0.00415 0.00595 1.88180 A5 1.89539 -0.00165 -0.00275 -0.01276 -0.01562 1.87977 A6 2.15424 -0.00027 -0.00108 -0.00390 -0.00504 2.14920 A7 1.86398 0.00081 0.00135 0.01229 0.01364 1.87762 A8 1.86398 0.00081 0.00135 0.01229 0.01364 1.87762 D1 2.00875 -0.00094 -0.01677 -0.10530 -0.12187 1.88689 D2 -2.32460 0.00059 -0.01378 -0.09231 -0.10620 -2.43080 D3 0.04331 -0.00095 -0.01599 -0.10427 -0.12036 -0.07705 D4 2.00876 -0.00094 -0.01677 -0.10530 -0.12187 1.88689 D5 0.04331 -0.00095 -0.01599 -0.10427 -0.12036 -0.07705 D6 -2.32460 0.00059 -0.01378 -0.09231 -0.10620 -2.43080 Item Value Threshold Converged? Maximum Force 0.004357 0.000450 NO RMS Force 0.001543 0.000300 NO Maximum Displacement 0.101445 0.001800 NO RMS Displacement 0.044098 0.001200 NO Predicted change in Energy=-2.883433D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.060687 0.105117 -0.085827 2 8 0 -0.053659 0.023103 1.502487 3 1 0 0.831558 -0.157329 1.850448 4 8 0 -0.659159 -1.257760 -0.494398 5 1 0 -1.517511 -1.030798 -0.880353 6 8 0 -0.767588 1.187818 -0.526936 7 8 0 1.445908 -0.012906 -0.432369 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.594535 0.000000 3 H 2.100543 0.968112 0.000000 4 O 1.594535 2.448426 2.988560 0.000000 5 H 2.100543 2.988561 3.706527 0.968112 0.000000 6 O 1.432780 2.446388 3.165224 2.448196 2.368447 7 O 1.432780 2.448196 2.368447 2.446388 3.165224 6 7 6 O 0.000000 7 O 2.519969 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000002 -0.148211 2 8 0 1.019291 0.678032 0.873485 3 1 0 1.845091 0.173838 0.840577 4 8 0 -1.019290 -0.678057 0.873466 5 1 0 -1.845091 -0.173863 0.840571 6 8 0 -0.696351 1.050086 -0.830322 7 8 0 0.696351 -1.050062 -0.830352 --------------------------------------------------------------------- Rotational constants (GHZ): 5.1291373 4.8481040 4.7834386 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 288.1682084635 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 3.95D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.706941 0.706930 -0.015580 0.015580 Ang= 90.03 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.200011651 A.U. after 11 cycles NFock= 11 Conv=0.38D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.18243535D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3990644209D-01 E2= -0.1431717494D+00 alpha-beta T2 = 0.1976180889D+00 E2= -0.7474523907D+00 beta-beta T2 = 0.3990644209D-01 E2= -0.1431717494D+00 ANorm= 0.1130234919D+01 E2 = -0.1033795889D+01 EUMP2 = -0.69923380754055D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.55D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.22D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.76D-04 Max=5.33D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.69D-04 Max=1.80D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.79D-05 Max=6.08D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.35D-05 Max=1.44D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.71D-06 Max=3.89D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.38D-07 Max=8.34D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=2.18D-07 Max=2.02D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=4.35D-08 Max=4.00D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=9.35D-09 Max=1.13D-07 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.71D-09 Max=1.81D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=3.22D-10 Max=3.42D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=6.10D-11 Max=6.72D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.003174051 0.005497689 -0.004488833 2 8 -0.003667522 0.001687286 0.001152146 3 1 0.002766220 -0.001605812 0.000699508 4 8 0.002876080 -0.003058147 -0.000032854 5 1 -0.003101033 0.001025907 -0.000226013 6 8 -0.000099919 -0.002286451 0.001473075 7 8 -0.001947877 -0.001260471 0.001422972 ------------------------------------------------------------------- Cartesian Forces: Max 0.005497689 RMS 0.002506702 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003080068 RMS 0.001580867 Search for a local minimum. Step number 6 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 5 6 DE= -4.37D-04 DEPred=-2.88D-04 R= 1.51D+00 TightC=F SS= 1.41D+00 RLast= 2.89D-01 DXNew= 1.2372D+00 8.6666D-01 Trust test= 1.51D+00 RLast= 2.89D-01 DXMaxT set to 8.67D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.34503 R2 0.04015 0.34503 R3 -0.03517 -0.03517 0.47177 R4 -0.03517 -0.03517 0.16689 0.47177 R5 0.05863 0.05863 -0.07444 -0.07444 0.48414 R6 0.05863 0.05863 -0.07444 -0.07444 0.08538 A1 -0.03573 -0.03573 0.01395 0.01395 -0.04803 A2 -0.00599 -0.00599 -0.00943 -0.00943 0.00300 A3 -0.00864 -0.00864 0.00654 0.00654 -0.01023 A4 -0.00864 -0.00864 0.00654 0.00654 -0.01023 A5 -0.00599 -0.00599 -0.00943 -0.00943 0.00300 A6 0.04377 0.04377 -0.00592 -0.00593 0.03920 A7 -0.00656 -0.00656 0.02115 0.02115 -0.01796 A8 -0.00656 -0.00656 0.02115 0.02115 -0.01796 D1 0.00116 0.00116 -0.01020 -0.01020 0.00587 D2 -0.01281 -0.01281 0.05394 0.05394 -0.03576 D3 -0.00430 -0.00430 -0.02851 -0.02851 0.01092 D4 0.00116 0.00116 -0.01020 -0.01020 0.00587 D5 -0.00429 -0.00429 -0.02851 -0.02851 0.01092 D6 -0.01281 -0.01281 0.05394 0.05394 -0.03576 R6 A1 A2 A3 A4 R6 0.48414 A1 -0.04803 0.28176 A2 0.00300 0.00798 0.23794 A3 -0.01023 -0.00845 0.00299 0.24720 A4 -0.01023 -0.00845 0.00299 -0.00280 0.24720 A5 0.00300 0.00798 -0.01206 0.00299 0.00299 A6 0.03920 -0.01979 0.01039 0.00555 0.00555 A7 -0.01796 0.02707 0.00360 0.00291 0.00290 A8 -0.01796 0.02707 0.00360 0.00291 0.00291 D1 0.00587 0.00183 -0.00193 -0.00041 -0.00041 D2 -0.03576 0.06564 -0.01227 0.00980 0.00980 D3 0.01092 -0.03632 0.00316 -0.00400 -0.00400 D4 0.00587 0.00183 -0.00193 -0.00041 -0.00041 D5 0.01092 -0.03632 0.00316 -0.00400 -0.00400 D6 -0.03576 0.06564 -0.01227 0.00980 0.00980 A5 A6 A7 A8 D1 A5 0.23794 A6 0.01039 0.23552 A7 0.00360 -0.02923 0.16538 A8 0.00360 -0.02923 0.00538 0.16538 D1 -0.00193 0.00273 0.00114 0.00114 0.00622 D2 -0.01227 -0.03917 0.01391 0.01391 -0.00407 D3 0.00316 0.02605 -0.00516 -0.00516 0.00150 D4 -0.00193 0.00273 0.00115 0.00115 -0.00013 D5 0.00316 0.02605 -0.00516 -0.00516 0.00150 D6 -0.01227 -0.03917 0.01391 0.01391 -0.00407 D2 D3 D4 D5 D6 D2 0.04192 D3 -0.02419 0.02270 D4 -0.00407 0.00150 0.00622 D5 -0.02419 0.01635 0.00150 0.02270 D6 0.03557 -0.02419 -0.00407 -0.02419 0.04192 ITU= 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00078 0.00635 0.14060 0.15118 0.15921 Eigenvalues --- 0.16000 0.18187 0.21880 0.30488 0.30488 Eigenvalues --- 0.30850 0.33354 0.39876 0.47412 0.85670 RFO step: Lambda=-8.13825512D-04 EMin= 7.77979084D-04 Quartic linear search produced a step of 1.18904. Iteration 1 RMS(Cart)= 0.07663691 RMS(Int)= 0.07947113 Iteration 2 RMS(Cart)= 0.07100274 RMS(Int)= 0.00530689 Iteration 3 RMS(Cart)= 0.00438547 RMS(Int)= 0.00039756 Iteration 4 RMS(Cart)= 0.00000767 RMS(Int)= 0.00039751 Iteration 5 RMS(Cart)= 0.00000000 RMS(Int)= 0.00039751 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.01323 0.00190 -0.00955 -0.00673 -0.01628 2.99696 R2 3.01323 0.00190 -0.00955 -0.00673 -0.01628 2.99696 R3 2.70756 -0.00212 -0.00174 0.00558 0.00383 2.71139 R4 2.70756 -0.00212 -0.00174 0.00558 0.00383 2.71139 R5 1.82947 0.00308 -0.00435 -0.00076 -0.00511 1.82436 R6 1.82947 0.00308 -0.00435 -0.00076 -0.00511 1.82436 A1 1.75066 -0.00074 0.03955 0.01877 0.05843 1.80909 A2 1.87977 -0.00088 -0.01857 -0.02431 -0.04312 1.83665 A3 1.88180 -0.00015 0.00707 0.00581 0.01332 1.89513 A4 1.88180 -0.00015 0.00707 0.00581 0.01332 1.89513 A5 1.87977 -0.00088 -0.01857 -0.02431 -0.04312 1.83665 A6 2.14920 0.00222 -0.00599 0.01910 0.01299 2.16219 A7 1.87762 -0.00067 0.01622 0.00939 0.02561 1.90323 A8 1.87762 -0.00067 0.01622 0.00939 0.02561 1.90323 D1 1.88689 -0.00080 -0.14491 -0.21284 -0.35682 1.53007 D2 -2.43080 -0.00156 -0.12627 -0.20655 -0.33342 -2.76422 D3 -0.07705 0.00054 -0.14311 -0.19594 -0.33937 -0.41642 D4 1.88689 -0.00080 -0.14491 -0.21284 -0.35682 1.53007 D5 -0.07705 0.00054 -0.14311 -0.19594 -0.33937 -0.41642 D6 -2.43080 -0.00156 -0.12627 -0.20655 -0.33342 -2.76422 Item Value Threshold Converged? Maximum Force 0.003080 0.000450 NO RMS Force 0.001581 0.000300 NO Maximum Displacement 0.372588 0.001800 NO RMS Displacement 0.144158 0.001200 NO Predicted change in Energy=-8.455096D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.081803 0.141692 -0.115691 2 8 0 -0.055497 0.124761 1.464186 3 1 0 0.710313 -0.325428 1.842177 4 8 0 -0.581186 -1.227547 -0.563768 5 1 0 -1.529832 -1.094046 -0.683188 6 8 0 -0.755622 1.220635 -0.555321 7 8 0 1.470258 0.017179 -0.455344 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.585921 0.000000 3 H 2.108666 0.965408 0.000000 4 O 1.585921 2.493528 2.875824 0.000000 5 H 2.108666 2.875825 3.462152 0.965408 0.000000 6 O 1.434808 2.401983 3.207379 2.454403 2.444074 7 O 1.434808 2.454403 2.444074 2.401983 3.207378 6 7 6 O 0.000000 7 O 2.532360 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.145856 2 8 0 1.084276 0.615440 0.834311 3 1 0 1.729795 -0.066596 1.058241 4 8 0 -1.084275 -0.615441 0.834311 5 1 0 -1.729794 0.066595 1.058242 6 8 0 -0.580123 1.125464 -0.820735 7 8 0 0.580123 -1.125464 -0.820736 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0881122 4.9966419 4.7208620 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 288.5906953997 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.53D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998863 0.000007 0.000000 0.047668 Ang= 5.46 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.201282701 A.U. after 13 cycles NFock= 13 Conv=0.52D-08 -V/T= 2.0008 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.14271424D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3982953261D-01 E2= -0.1430944270D+00 alpha-beta T2 = 0.1971849438D+00 E2= -0.7469709820D+00 beta-beta T2 = 0.3982953261D-01 E2= -0.1430944270D+00 ANorm= 0.1129975225D+01 E2 = -0.1033159836D+01 EUMP2 = -0.69923444253697D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.28D-03 Max=6.45D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.28D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.77D-04 Max=5.79D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.72D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.77D-05 Max=6.05D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.29D-05 Max=1.35D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.82D-06 Max=7.33D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.74D-07 Max=1.14D-05 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.97D-07 Max=1.73D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.54D-08 Max=3.62D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.68D-09 Max=7.78D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.48D-09 Max=1.42D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.97D-10 Max=2.53D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.41D-11 Max=5.30D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.009542849 0.016529052 -0.013495816 2 8 -0.007496645 0.000500223 0.005311285 3 1 0.005131816 -0.003657975 0.001318889 4 8 0.002782915 -0.008664880 0.001355025 5 1 -0.006154922 0.001885936 0.000127987 6 8 0.002207786 -0.006052294 0.002222498 7 8 -0.006013799 -0.000540063 0.003160131 ------------------------------------------------------------------- Cartesian Forces: Max 0.016529052 RMS 0.006515670 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.009014858 RMS 0.004381656 Search for a local minimum. Step number 7 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 6 7 DE= -6.35D-04 DEPred=-8.46D-04 R= 7.51D-01 TightC=F SS= 1.41D+00 RLast= 8.47D-01 DXNew= 1.4575D+00 2.5401D+00 Trust test= 7.51D-01 RLast= 8.47D-01 DXMaxT set to 1.46D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.35459 R2 0.04971 0.35459 R3 -0.04226 -0.04226 0.47648 R4 -0.04226 -0.04226 0.17160 0.47648 R5 0.05923 0.05923 -0.07269 -0.07269 0.47544 R6 0.05923 0.05923 -0.07269 -0.07269 0.07668 A1 -0.05546 -0.05546 0.03006 0.03006 -0.05506 A2 0.00724 0.00724 -0.02220 -0.02220 0.01560 A3 -0.00670 -0.00670 0.00455 0.00455 -0.00790 A4 -0.00670 -0.00670 0.00455 0.00455 -0.00790 A5 0.00724 0.00724 -0.02220 -0.02220 0.01560 A6 0.03107 0.03107 0.00852 0.00852 0.01846 A7 -0.00926 -0.00926 0.02304 0.02304 -0.01770 A8 -0.00926 -0.00926 0.02304 0.02304 -0.01770 D1 0.00443 0.00443 -0.01334 -0.01334 0.00887 D2 -0.01670 -0.01670 0.05743 0.05743 -0.03841 D3 0.00190 0.00190 -0.03461 -0.03461 0.01731 D4 0.00443 0.00443 -0.01334 -0.01334 0.00887 D5 0.00190 0.00190 -0.03461 -0.03461 0.01731 D6 -0.01670 -0.01670 0.05743 0.05743 -0.03841 R6 A1 A2 A3 A4 R6 0.47544 A1 -0.05506 0.31867 A2 0.01560 -0.01151 0.24038 A3 -0.00790 -0.01099 0.00271 0.24704 A4 -0.00790 -0.01099 0.00271 -0.00296 0.24704 A5 0.01560 -0.01152 -0.00962 0.00271 0.00271 A6 0.01846 -0.00680 0.01970 0.00800 0.00800 A7 -0.01770 0.03293 -0.00072 0.00225 0.00225 A8 -0.01770 0.03293 -0.00072 0.00225 0.00225 D1 0.00887 -0.00307 -0.00117 -0.00045 -0.00045 D2 -0.03841 0.07207 -0.01440 0.00962 0.00962 D3 0.01731 -0.04512 0.00364 -0.00426 -0.00426 D4 0.00887 -0.00307 -0.00117 -0.00045 -0.00045 D5 0.01731 -0.04512 0.00364 -0.00426 -0.00426 D6 -0.03841 0.07207 -0.01440 0.00962 0.00962 A5 A6 A7 A8 D1 A5 0.24038 A6 0.01970 0.20681 A7 -0.00072 -0.02465 0.16612 A8 -0.00072 -0.02465 0.00612 0.16612 D1 -0.00117 0.00477 0.00008 0.00008 0.00644 D2 -0.01440 -0.03950 0.01513 0.01513 -0.00463 D3 0.00364 0.03155 -0.00720 -0.00720 0.00170 D4 -0.00117 0.00477 0.00008 0.00008 0.00010 D5 0.00364 0.03154 -0.00720 -0.00720 0.00170 D6 -0.01440 -0.03950 0.01512 0.01513 -0.00463 D2 D3 D4 D5 D6 D2 0.04283 D3 -0.02505 0.02258 D4 -0.00463 0.00170 0.00644 D5 -0.02505 0.01624 0.00170 0.02258 D6 0.03649 -0.02505 -0.00463 -0.02505 0.04283 ITU= 1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00172 0.00635 0.14196 0.14500 0.16000 Eigenvalues --- 0.16599 0.18341 0.22110 0.30488 0.30488 Eigenvalues --- 0.31200 0.35543 0.39876 0.47283 0.87912 RFO step: Lambda=-4.84545299D-04 EMin= 1.71864285D-03 Quartic linear search produced a step of -0.13460. Iteration 1 RMS(Cart)= 0.01925633 RMS(Int)= 0.00022668 Iteration 2 RMS(Cart)= 0.00024354 RMS(Int)= 0.00004419 Iteration 3 RMS(Cart)= 0.00000003 RMS(Int)= 0.00004419 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.99696 0.00684 0.00219 0.00854 0.01073 3.00768 R2 2.99696 0.00684 0.00219 0.00854 0.01073 3.00768 R3 2.71139 -0.00652 -0.00052 -0.00471 -0.00522 2.70617 R4 2.71139 -0.00652 -0.00052 -0.00471 -0.00522 2.70617 R5 1.82436 0.00629 0.00069 0.00360 0.00429 1.82865 R6 1.82436 0.00629 0.00069 0.00360 0.00429 1.82865 A1 1.80909 -0.00901 -0.00787 -0.00654 -0.01442 1.79467 A2 1.83665 0.00204 0.00580 -0.00403 0.00178 1.83844 A3 1.89513 0.00012 -0.00179 0.00499 0.00314 1.89826 A4 1.89513 0.00012 -0.00179 0.00499 0.00314 1.89826 A5 1.83665 0.00204 0.00580 -0.00403 0.00178 1.83844 A6 2.16219 0.00229 -0.00175 0.00289 0.00113 2.16332 A7 1.90323 -0.00221 -0.00345 0.00021 -0.00324 1.89999 A8 1.90323 -0.00221 -0.00345 0.00021 -0.00324 1.89999 D1 1.53007 -0.00004 0.04803 -0.07683 -0.02890 1.50116 D2 -2.76422 -0.00277 0.04488 -0.07552 -0.03058 -2.79480 D3 -0.41642 0.00174 0.04568 -0.07127 -0.02555 -0.44197 D4 1.53007 -0.00004 0.04803 -0.07683 -0.02890 1.50116 D5 -0.41642 0.00174 0.04568 -0.07127 -0.02555 -0.44197 D6 -2.76422 -0.00277 0.04488 -0.07552 -0.03058 -2.79480 Item Value Threshold Converged? Maximum Force 0.009015 0.000450 NO RMS Force 0.004382 0.000300 NO Maximum Displacement 0.051155 0.001800 NO RMS Displacement 0.019348 0.001200 NO Predicted change in Energy=-2.483407D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.087403 0.151391 -0.123610 2 8 0 -0.060065 0.126466 1.460946 3 1 0 0.694528 -0.347738 1.837938 4 8 0 -0.575629 -1.227539 -0.561928 5 1 0 -1.530191 -1.099698 -0.656118 6 8 0 -0.749949 1.225980 -0.565031 7 8 0 1.474139 0.028382 -0.459146 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.591598 0.000000 3 H 2.113149 0.967679 0.000000 4 O 1.591598 2.488203 2.854243 0.000000 5 H 2.113149 2.854244 3.425658 0.967679 0.000000 6 O 1.432044 2.406128 3.215176 2.459706 2.454761 7 O 1.432044 2.459706 2.454761 2.406128 3.215176 6 7 6 O 0.000000 7 O 2.528244 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.151841 2 8 0 1.075936 0.624620 0.840829 3 1 0 1.711686 -0.062579 1.085744 4 8 0 -1.075936 -0.624620 0.840830 5 1 0 -1.711685 0.062579 1.085744 6 8 0 -0.588820 1.118613 -0.824706 7 8 0 0.588820 -1.118613 -0.824706 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0574091 4.9791553 4.7432564 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 288.3758143260 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.76D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999991 0.000000 0.000000 -0.004197 Ang= 0.48 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. DSYEVD-2 returned Info= 12323 IAlg= 4 N= 155 NDim= 155 NE2= 1259445 trying DSYEV. SCF Done: E(RHF) = -698.201218256 A.U. after 10 cycles NFock= 10 Conv=0.73D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.14451499D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3987094341D-01 E2= -0.1431353251D+00 alpha-beta T2 = 0.1974964365D+00 E2= -0.7473638992D+00 beta-beta T2 = 0.3987094341D-01 E2= -0.1431353251D+00 ANorm= 0.1130149691D+01 E2 = -0.1033634550D+01 EUMP2 = -0.69923485280568D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.28D-03 Max=6.33D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.27D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.76D-04 Max=5.62D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.70D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.74D-05 Max=6.17D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.27D-05 Max=1.35D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.74D-06 Max=6.78D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.52D-07 Max=1.11D-05 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.95D-07 Max=1.70D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.49D-08 Max=3.52D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.59D-09 Max=7.51D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.47D-09 Max=1.45D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.94D-10 Max=2.44D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.30D-11 Max=4.83D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.005985925 0.010368069 -0.008465442 2 8 -0.004938516 0.000870986 0.003403321 3 1 0.003359365 -0.002563072 0.000508680 4 8 0.002190944 -0.005630076 0.000482392 5 1 -0.003959188 0.001524166 0.000339598 6 8 0.000610289 -0.003681738 0.001519476 7 8 -0.003248819 -0.000888335 0.002211975 ------------------------------------------------------------------- Cartesian Forces: Max 0.010368069 RMS 0.004123989 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.005197929 RMS 0.002711160 Search for a local minimum. Step number 8 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 8 DE= -4.10D-04 DEPred=-2.48D-04 R= 1.65D+00 TightC=F SS= 1.41D+00 RLast= 7.36D-02 DXNew= 2.4513D+00 2.2094D-01 Trust test= 1.65D+00 RLast= 7.36D-02 DXMaxT set to 1.46D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30428 R2 -0.00060 0.30428 R3 0.00153 0.00153 0.43913 R4 0.00153 0.00153 0.13425 0.43913 R5 0.00812 0.00812 -0.02731 -0.02730 0.42457 R6 0.00812 0.00812 -0.02731 -0.02730 0.02581 A1 0.00619 0.00619 -0.02300 -0.02300 0.00829 A2 -0.00245 -0.00245 -0.01458 -0.01458 0.00482 A3 -0.00530 -0.00530 0.00263 0.00263 -0.00731 A4 -0.00530 -0.00530 0.00263 0.00263 -0.00731 A5 -0.00245 -0.00245 -0.01458 -0.01458 0.00482 A6 0.00689 0.00689 0.03150 0.03150 -0.00386 A7 0.01812 0.01812 -0.00287 -0.00287 0.00770 A8 0.01812 0.01812 -0.00287 -0.00287 0.00770 D1 -0.00016 -0.00016 -0.00898 -0.00898 0.00463 D2 0.01737 0.01737 0.02601 0.02601 -0.00585 D3 -0.01485 -0.01485 -0.01927 -0.01927 0.00120 D4 -0.00016 -0.00016 -0.00898 -0.00898 0.00463 D5 -0.01485 -0.01485 -0.01927 -0.01927 0.00120 D6 0.01737 0.01737 0.02601 0.02601 -0.00585 R6 A1 A2 A3 A4 R6 0.42457 A1 0.00829 0.24361 A2 0.00482 -0.00030 0.23936 A3 -0.00731 -0.01327 0.00372 0.24764 A4 -0.00731 -0.01327 0.00372 -0.00236 0.24764 A5 0.00482 -0.00030 -0.01064 0.00372 0.00372 A6 -0.00386 0.02438 0.01302 0.00691 0.00691 A7 0.00770 -0.00230 0.00673 0.00339 0.00339 A8 0.00770 -0.00230 0.00673 0.00339 0.00339 D1 0.00463 0.00284 -0.00243 -0.00066 -0.00066 D2 -0.00585 0.02890 -0.00600 0.01029 0.01029 D3 0.00120 -0.02398 -0.00039 -0.00450 -0.00450 D4 0.00463 0.00284 -0.00243 -0.00066 -0.00066 D5 0.00120 -0.02398 -0.00039 -0.00450 -0.00450 D6 -0.00585 0.02890 -0.00600 0.01029 0.01029 A5 A6 A7 A8 D1 A5 0.23936 A6 0.01302 0.20002 A7 0.00673 -0.01668 0.15681 A8 0.00673 -0.01668 -0.00319 0.15681 D1 -0.00243 0.00347 0.00161 0.00161 0.00619 D2 -0.00600 -0.02754 0.00134 0.00134 -0.00234 D3 -0.00039 0.02542 -0.00016 -0.00016 0.00053 D4 -0.00243 0.00347 0.00161 0.00161 -0.00015 D5 -0.00039 0.02542 -0.00016 -0.00016 0.00053 D6 -0.00600 -0.02754 0.00134 0.00134 -0.00234 D2 D3 D4 D5 D6 D2 0.02380 D3 -0.01548 0.01778 D4 -0.00234 0.00053 0.00619 D5 -0.01548 0.01143 0.00053 0.01778 D6 0.01746 -0.01548 -0.00234 -0.01548 0.02380 ITU= 1 1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00150 0.00635 0.13554 0.14669 0.16000 Eigenvalues --- 0.16425 0.17952 0.21478 0.26105 0.30488 Eigenvalues --- 0.30488 0.31885 0.39876 0.43352 0.59808 RFO step: Lambda=-1.71789264D-04 EMin= 1.50117442D-03 Quartic linear search produced a step of 1.67226. Iteration 1 RMS(Cart)= 0.06892572 RMS(Int)= 0.00445177 Iteration 2 RMS(Cart)= 0.00391593 RMS(Int)= 0.00003740 Iteration 3 RMS(Cart)= 0.00000974 RMS(Int)= 0.00003552 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003552 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.00768 0.00407 0.01794 0.00035 0.01829 3.02598 R2 3.00768 0.00407 0.01794 0.00035 0.01829 3.02598 R3 2.70617 -0.00359 -0.00873 0.00131 -0.00743 2.69875 R4 2.70617 -0.00359 -0.00873 0.00131 -0.00743 2.69875 R5 1.82865 0.00407 0.00718 0.00134 0.00851 1.83716 R6 1.82865 0.00407 0.00718 0.00134 0.00851 1.83716 A1 1.79467 -0.00520 -0.02412 0.00960 -0.01455 1.78012 A2 1.83844 0.00096 0.00298 -0.01081 -0.00785 1.83058 A3 1.89826 -0.00027 0.00525 0.00057 0.00575 1.90401 A4 1.89826 -0.00027 0.00525 0.00057 0.00575 1.90401 A5 1.83844 0.00096 0.00298 -0.01082 -0.00785 1.83058 A6 2.16332 0.00225 0.00189 0.01156 0.01342 2.17675 A7 1.89999 -0.00209 -0.00542 -0.00696 -0.01238 1.88762 A8 1.89999 -0.00209 -0.00542 -0.00696 -0.01238 1.88762 D1 1.50116 -0.00005 -0.04833 -0.08839 -0.13679 1.36438 D2 -2.79480 -0.00208 -0.05113 -0.08792 -0.13901 -2.93381 D3 -0.44197 0.00133 -0.04272 -0.08083 -0.12354 -0.56551 D4 1.50116 -0.00005 -0.04833 -0.08839 -0.13679 1.36438 D5 -0.44197 0.00133 -0.04272 -0.08083 -0.12354 -0.56551 D6 -2.79480 -0.00208 -0.05113 -0.08792 -0.13901 -2.93381 Item Value Threshold Converged? Maximum Force 0.005198 0.000450 NO RMS Force 0.002711 0.000300 NO Maximum Displacement 0.196802 0.001800 NO RMS Displacement 0.070191 0.001200 NO Predicted change in Energy=-3.254852D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.102964 0.178344 -0.145616 2 8 0 -0.066056 0.150632 1.446476 3 1 0 0.625092 -0.425607 1.814447 4 8 0 -0.550862 -1.219183 -0.574012 5 1 0 -1.517784 -1.120608 -0.551975 6 8 0 -0.740825 1.243203 -0.585624 7 8 0 1.487707 0.050464 -0.470645 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.601278 0.000000 3 H 2.116417 0.972184 0.000000 4 O 1.601278 2.488735 2.778015 0.000000 5 H 2.116417 2.778015 3.267246 0.972184 0.000000 6 O 1.428115 2.403841 3.226608 2.469731 2.488453 7 O 1.428115 2.469731 2.488453 2.403841 3.226608 6 7 6 O 0.000000 7 O 2.530258 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.164301 2 8 0 1.080818 0.616670 0.843489 3 1 0 1.629842 -0.111090 1.181246 4 8 0 -1.080818 -0.616672 0.843488 5 1 0 -1.629841 0.111087 1.181247 6 8 0 -0.570110 1.129394 -0.826841 7 8 0 0.570109 -1.129391 -0.826845 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0065734 4.9706610 4.7625482 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 288.0029118848 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.54D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999975 -0.000001 0.000000 0.007135 Ang= -0.82 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. DSYEVD-2 returned Info= 12323 IAlg= 4 N= 155 NDim= 155 NE2= 1259445 trying DSYEV. SCF Done: E(RHF) = -698.200203631 A.U. after 11 cycles NFock= 11 Conv=0.66D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.12986117D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3999421978D-01 E2= -0.1432739537D+00 alpha-beta T2 = 0.1982995511D+00 E2= -0.7483860884D+00 beta-beta T2 = 0.3999421978D-01 E2= -0.1432739537D+00 ANorm= 0.1130613988D+01 E2 = -0.1034933996D+01 EUMP2 = -0.69923513762719D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.53D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.28D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.78D-04 Max=5.56D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.69D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.69D-05 Max=6.54D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.25D-05 Max=1.35D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.59D-06 Max=4.67D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.14D-07 Max=8.07D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.90D-07 Max=1.67D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.33D-08 Max=3.32D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=6.99D-09 Max=6.57D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.35D-09 Max=1.39D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.78D-10 Max=2.33D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.18D-11 Max=4.93D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000538782 0.000933430 -0.000762097 2 8 -0.000532185 -0.000823944 0.000610762 3 1 0.000431768 0.000105292 -0.000170925 4 8 -0.000408833 -0.000805955 0.000720034 5 1 -0.000146495 0.000388839 -0.000232533 6 8 -0.000224443 0.000062017 -0.000330555 7 8 0.000341406 0.000140320 0.000165314 ------------------------------------------------------------------- Cartesian Forces: Max 0.000933430 RMS 0.000497287 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001545478 RMS 0.000533213 Search for a local minimum. Step number 9 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 7 8 9 DE= -2.85D-04 DEPred=-3.25D-04 R= 8.75D-01 TightC=F SS= 1.41D+00 RLast= 3.29D-01 DXNew= 2.4513D+00 9.8774D-01 Trust test= 8.75D-01 RLast= 3.29D-01 DXMaxT set to 1.46D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.29561 R2 -0.00926 0.29561 R3 0.00593 0.00593 0.43912 R4 0.00593 0.00593 0.13424 0.43912 R5 0.00131 0.00131 -0.02466 -0.02466 0.41951 R6 0.00131 0.00131 -0.02466 -0.02466 0.02075 A1 0.02397 0.02397 -0.03569 -0.03569 0.02360 A2 -0.00805 -0.00805 -0.00976 -0.00976 -0.00030 A3 -0.00341 -0.00341 0.00065 0.00065 -0.00545 A4 -0.00341 -0.00341 0.00065 0.00065 -0.00545 A5 -0.00805 -0.00805 -0.00976 -0.00976 -0.00030 A6 0.00144 0.00143 0.03504 0.03504 -0.00843 A7 0.02317 0.02317 -0.00653 -0.00653 0.01207 A8 0.02317 0.02317 -0.00653 -0.00653 0.01207 D1 -0.00200 -0.00200 -0.00685 -0.00685 0.00274 D2 0.01863 0.01863 0.02657 0.02657 -0.00530 D3 -0.01572 -0.01572 -0.01940 -0.01940 0.00072 D4 -0.00200 -0.00200 -0.00685 -0.00685 0.00274 D5 -0.01572 -0.01572 -0.01940 -0.01940 0.00072 D6 0.01863 0.01863 0.02657 0.02657 -0.00530 R6 A1 A2 A3 A4 R6 0.41951 A1 0.02360 0.21319 A2 -0.00030 0.00792 0.23751 A3 -0.00545 -0.01546 0.00403 0.24770 A4 -0.00545 -0.01546 0.00403 -0.00230 0.24770 A5 -0.00030 0.00792 -0.01249 0.00403 0.00403 A6 -0.00843 0.03431 0.01018 0.00774 0.00774 A7 0.01207 -0.01087 0.00903 0.00279 0.00279 A8 0.01207 -0.01087 0.00903 0.00279 0.00279 D1 0.00274 0.00464 -0.00255 -0.00081 -0.00081 D2 -0.00530 0.02434 -0.00412 0.00946 0.00946 D3 0.00072 -0.02125 -0.00147 -0.00404 -0.00404 D4 0.00274 0.00464 -0.00255 -0.00081 -0.00081 D5 0.00072 -0.02125 -0.00147 -0.00404 -0.00404 D6 -0.00530 0.02434 -0.00412 0.00946 0.00946 A5 A6 A7 A8 D1 A5 0.23751 A6 0.01018 0.19685 A7 0.00903 -0.01388 0.15440 A8 0.00903 -0.01388 -0.00560 0.15440 D1 -0.00255 0.00272 0.00209 0.00209 0.00645 D2 -0.00412 -0.02634 0.00002 0.00002 -0.00143 D3 -0.00147 0.02468 0.00063 0.00063 0.00003 D4 -0.00255 0.00272 0.00209 0.00209 0.00010 D5 -0.00147 0.02468 0.00063 0.00063 0.00003 D6 -0.00412 -0.02634 0.00002 0.00002 -0.00143 D2 D3 D4 D5 D6 D2 0.02427 D3 -0.01566 0.01784 D4 -0.00143 0.00003 0.00645 D5 -0.01566 0.01149 0.00003 0.01784 D6 0.01792 -0.01566 -0.00143 -0.01566 0.02427 ITU= 1 1 1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00229 0.00635 0.11605 0.14884 0.16000 Eigenvalues --- 0.16224 0.17515 0.19354 0.24472 0.30488 Eigenvalues --- 0.30488 0.31915 0.39876 0.42886 0.59506 RFO step: Lambda=-1.87063434D-04 EMin= 2.28813090D-03 Quartic linear search produced a step of -0.14142. Iteration 1 RMS(Cart)= 0.04908149 RMS(Int)= 0.00312265 Iteration 2 RMS(Cart)= 0.00250529 RMS(Int)= 0.00003938 Iteration 3 RMS(Cart)= 0.00000440 RMS(Int)= 0.00003930 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00003930 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.02598 0.00046 -0.00259 0.00855 0.00596 3.03194 R2 3.02598 0.00046 -0.00259 0.00855 0.00596 3.03194 R3 2.69875 0.00028 0.00105 -0.00098 0.00007 2.69881 R4 2.69875 0.00028 0.00105 -0.00098 0.00007 2.69881 R5 1.83716 0.00018 -0.00120 0.00389 0.00269 1.83985 R6 1.83716 0.00018 -0.00120 0.00389 0.00269 1.83985 A1 1.78012 -0.00155 0.00206 -0.02167 -0.01960 1.76052 A2 1.83058 0.00084 0.00111 0.01263 0.01371 1.84429 A3 1.90401 -0.00024 -0.00081 -0.00534 -0.00611 1.89790 A4 1.90401 -0.00024 -0.00081 -0.00534 -0.00611 1.89790 A5 1.83058 0.00084 0.00111 0.01263 0.01371 1.84429 A6 2.17675 -0.00004 -0.00190 0.00118 -0.00072 2.17602 A7 1.88762 -0.00053 0.00175 -0.01453 -0.01277 1.87484 A8 1.88762 -0.00053 0.00175 -0.01453 -0.01277 1.87484 D1 1.36438 0.00043 0.01934 0.09083 0.11026 1.47464 D2 -2.93381 -0.00013 0.01966 0.08108 0.10069 -2.83312 D3 -0.56551 0.00028 0.01747 0.08837 0.10580 -0.45970 D4 1.36438 0.00043 0.01934 0.09083 0.11026 1.47464 D5 -0.56551 0.00028 0.01747 0.08837 0.10580 -0.45970 D6 -2.93381 -0.00013 0.01966 0.08108 0.10069 -2.83312 Item Value Threshold Converged? Maximum Force 0.001545 0.000450 NO RMS Force 0.000533 0.000300 NO Maximum Displacement 0.122468 0.001800 NO RMS Displacement 0.048675 0.001200 NO Predicted change in Energy=-1.097210D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.096489 0.167129 -0.136460 2 8 0 -0.073429 0.122109 1.458316 3 1 0 0.679882 -0.379185 1.817673 4 8 0 -0.567995 -1.233108 -0.551194 5 1 0 -1.529030 -1.091608 -0.616782 6 8 0 -0.749247 1.227035 -0.584731 7 8 0 1.483566 0.044873 -0.453772 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.604434 0.000000 3 H 2.111266 0.973608 0.000000 4 O 1.604434 2.473730 2.810323 0.000000 5 H 2.111266 2.810323 3.363542 0.973608 0.000000 6 O 1.428151 2.419014 3.223957 2.467038 2.446466 7 O 1.428151 2.467038 2.446466 2.419015 3.223957 6 7 6 O 0.000000 7 O 2.529844 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.165912 2 8 0 1.012489 0.710425 0.856032 3 1 0 1.681029 0.049940 1.110446 4 8 0 -1.012489 -0.710421 0.856035 5 1 0 -1.681030 -0.049936 1.110445 6 8 0 -0.687203 1.061968 -0.828929 7 8 0 0.687203 -1.061971 -0.828925 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0063881 4.9374688 4.7756229 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 287.7996981698 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.64D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998750 0.000002 0.000000 -0.049975 Ang= 5.73 deg. ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. DSYEVD-2 returned Info= 12323 IAlg= 4 N= 155 NDim= 155 NE2= 1259445 trying DSYEV. SCF Done: E(RHF) = -698.199804187 A.U. after 11 cycles NFock= 11 Conv=0.58D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.14231316D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4004060200D-01 E2= -0.1433205224D+00 alpha-beta T2 = 0.1985468491D+00 E2= -0.7486628586D+00 beta-beta T2 = 0.4004060200D-01 E2= -0.1433205224D+00 ANorm= 0.1130764367D+01 E2 = -0.1035303904D+01 EUMP2 = -0.69923510809049D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.08D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.19D-03 Max=1.27D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.79D-04 Max=5.35D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.68D-04 Max=1.75D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.71D-05 Max=6.72D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.28D-05 Max=1.38D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.62D-06 Max=5.15D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.16D-07 Max=9.11D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.95D-07 Max=1.59D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.56D-08 Max=3.46D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.85D-09 Max=7.17D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.56D-09 Max=1.50D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=3.02D-10 Max=2.79D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.27D-11 Max=5.02D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.001686388 -0.002921120 0.002385046 2 8 0.001981396 0.001114364 -0.000625884 3 1 -0.001247884 0.000504040 -0.000216510 4 8 -0.000382525 0.001655000 -0.001635277 5 1 0.001225006 -0.000543675 0.000248871 6 8 -0.000458952 0.000503426 0.000057642 7 8 0.000569345 -0.000312036 -0.000213889 ------------------------------------------------------------------- Cartesian Forces: Max 0.002921120 RMS 0.001250432 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.004163718 RMS 0.001200406 Search for a local minimum. Step number 10 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 8 10 9 DE= 2.95D-05 DEPred=-1.10D-04 R=-2.69D-01 Trust test=-2.69D-01 RLast= 2.61D-01 DXMaxT set to 7.29D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.29925 R2 -0.00563 0.29925 R3 0.00385 0.00385 0.43936 R4 0.00385 0.00385 0.13448 0.43936 R5 0.00575 0.00575 -0.02631 -0.02631 0.42436 R6 0.00575 0.00575 -0.02631 -0.02631 0.02560 A1 0.00960 0.00960 -0.02840 -0.02841 0.00606 A2 -0.00333 -0.00333 -0.01268 -0.01268 0.00594 A3 -0.00178 -0.00178 0.00092 0.00092 -0.00431 A4 -0.00178 -0.00178 0.00092 0.00092 -0.00431 A5 -0.00333 -0.00333 -0.01268 -0.01268 0.00594 A6 -0.00016 -0.00016 0.03493 0.03493 -0.00982 A7 0.02106 0.02106 -0.00497 -0.00497 0.00906 A8 0.02106 0.02106 -0.00497 -0.00497 0.00906 D1 -0.00021 -0.00021 -0.00778 -0.00778 0.00495 D2 0.01656 0.01656 0.02685 0.02685 -0.00724 D3 -0.01349 -0.01349 -0.02023 -0.02023 0.00333 D4 -0.00021 -0.00021 -0.00778 -0.00778 0.00495 D5 -0.01348 -0.01348 -0.02023 -0.02023 0.00333 D6 0.01656 0.01656 0.02685 0.02685 -0.00724 R6 A1 A2 A3 A4 R6 0.42436 A1 0.00606 0.27158 A2 0.00594 -0.01155 0.24366 A3 -0.00431 -0.02147 0.00661 0.24711 A4 -0.00431 -0.02147 0.00661 -0.00289 0.24711 A5 0.00594 -0.01155 -0.00634 0.00661 0.00661 A6 -0.00982 0.04039 0.00781 0.00812 0.00812 A7 0.00906 -0.00171 0.00619 0.00124 0.00124 A8 0.00906 -0.00171 0.00619 0.00124 0.00124 D1 0.00495 -0.00266 -0.00013 -0.00002 -0.00002 D2 -0.00724 0.03249 -0.00727 0.00942 0.00942 D3 0.00333 -0.03046 0.00173 -0.00337 -0.00337 D4 0.00495 -0.00266 -0.00013 -0.00002 -0.00002 D5 0.00333 -0.03046 0.00173 -0.00337 -0.00337 D6 -0.00724 0.03249 -0.00727 0.00942 0.00942 A5 A6 A7 A8 D1 A5 0.24366 A6 0.00781 0.19641 A7 0.00619 -0.01228 0.15551 A8 0.00619 -0.01228 -0.00449 0.15551 D1 -0.00013 0.00191 0.00097 0.00097 0.00736 D2 -0.00727 -0.02604 0.00167 0.00167 -0.00247 D3 0.00173 0.02394 -0.00100 -0.00100 0.00120 D4 -0.00013 0.00191 0.00097 0.00097 0.00101 D5 0.00173 0.02394 -0.00100 -0.00100 0.00120 D6 -0.00727 -0.02604 0.00167 0.00167 -0.00247 D2 D3 D4 D5 D6 D2 0.02484 D3 -0.01679 0.01927 D4 -0.00247 0.00120 0.00736 D5 -0.01679 0.01293 0.00120 0.01927 D6 0.01850 -0.01679 -0.00247 -0.01679 0.02484 ITU= -1 1 1 1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00347 0.00635 0.13433 0.15106 0.15993 Eigenvalues --- 0.16000 0.17761 0.20510 0.29253 0.30488 Eigenvalues --- 0.30488 0.32769 0.39876 0.43342 0.59661 RFO step: Lambda=-7.56405498D-06 EMin= 3.46766286D-03 Quartic linear search produced a step of -0.57761. Iteration 1 RMS(Cart)= 0.02194558 RMS(Int)= 0.00070352 Iteration 2 RMS(Cart)= 0.00059752 RMS(Int)= 0.00000931 Iteration 3 RMS(Cart)= 0.00000031 RMS(Int)= 0.00000931 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.03194 -0.00096 -0.00344 -0.00080 -0.00425 3.02769 R2 3.03194 -0.00096 -0.00344 -0.00080 -0.00425 3.02769 R3 2.69881 0.00063 -0.00004 0.00084 0.00080 2.69962 R4 2.69881 0.00063 -0.00004 0.00084 0.00080 2.69962 R5 1.83985 -0.00130 -0.00155 -0.00101 -0.00256 1.83729 R6 1.83985 -0.00130 -0.00155 -0.00101 -0.00256 1.83729 A1 1.76052 0.00416 0.01132 0.00299 0.01431 1.77483 A2 1.84429 -0.00126 -0.00792 0.00071 -0.00721 1.83709 A3 1.89790 -0.00045 0.00353 -0.00188 0.00164 1.89954 A4 1.89790 -0.00045 0.00353 -0.00188 0.00164 1.89954 A5 1.84429 -0.00126 -0.00792 0.00071 -0.00721 1.83709 A6 2.17602 0.00027 0.00042 0.00005 0.00046 2.17648 A7 1.87484 0.00057 0.00738 -0.00025 0.00713 1.88197 A8 1.87484 0.00057 0.00738 -0.00025 0.00713 1.88197 D1 1.47464 -0.00029 -0.06369 0.01080 -0.05291 1.42173 D2 -2.83312 0.00041 -0.05816 0.01015 -0.04800 -2.88112 D3 -0.45970 -0.00056 -0.06111 0.00934 -0.05176 -0.51146 D4 1.47464 -0.00029 -0.06369 0.01080 -0.05291 1.42173 D5 -0.45970 -0.00056 -0.06111 0.00934 -0.05176 -0.51146 D6 -2.83312 0.00041 -0.05816 0.01015 -0.04800 -2.88112 Item Value Threshold Converged? Maximum Force 0.004164 0.000450 NO RMS Force 0.001200 0.000300 NO Maximum Displacement 0.053342 0.001800 NO RMS Displacement 0.022101 0.001200 NO Predicted change in Energy=-4.098998D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.098780 0.171098 -0.139700 2 8 0 -0.068319 0.137640 1.453397 3 1 0 0.655614 -0.399645 1.817428 4 8 0 -0.560117 -1.226141 -0.564644 5 1 0 -1.524547 -1.105419 -0.588555 6 8 0 -0.746355 1.233678 -0.584109 7 8 0 1.485181 0.046034 -0.460767 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.602186 0.000000 3 H 2.113329 0.972251 0.000000 4 O 1.602186 2.484805 2.799172 0.000000 5 H 2.113329 2.799172 3.322645 0.972251 0.000000 6 O 1.428576 2.410905 3.225002 2.466937 2.465153 7 O 1.428576 2.466937 2.465153 2.410905 3.225002 6 7 6 O 0.000000 7 O 2.530902 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.163841 2 8 0 1.048928 0.665819 0.847809 3 1 0 1.661056 -0.029745 1.142362 4 8 0 -1.048928 -0.665818 0.847809 5 1 0 -1.661057 0.029746 1.142362 6 8 0 -0.631097 1.096850 -0.826763 7 8 0 0.631097 -1.096851 -0.826762 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0060034 4.9640932 4.7601398 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 287.9097866858 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.90D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Lowest energy guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999677 0.000001 0.000000 -0.025426 Ang= 2.91 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999698 -0.000001 0.000000 0.024561 Ang= -2.81 deg. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.200142728 A.U. after 9 cycles NFock= 9 Conv=0.77D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.13407597D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4001145501D-01 E2= -0.1432893144D+00 alpha-beta T2 = 0.1983769700D+00 E2= -0.7484629431D+00 beta-beta T2 = 0.4001145501D-01 E2= -0.1432893144D+00 ANorm= 0.1130663469D+01 E2 = -0.1035041572D+01 EUMP2 = -0.69923518429948D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.25D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.19D-03 Max=1.28D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.79D-04 Max=5.50D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.70D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.71D-05 Max=6.11D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.27D-05 Max=1.36D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.62D-06 Max=5.13D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.20D-07 Max=8.76D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.92D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.43D-08 Max=3.36D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.41D-09 Max=6.82D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.46D-09 Max=1.47D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.93D-10 Max=2.59D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.23D-11 Max=4.98D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000030479 0.000052715 -0.000043053 2 8 -0.000070956 0.000095479 -0.000076520 3 1 0.000058428 -0.000028374 -0.000015152 4 8 0.000138506 0.000021511 -0.000019005 5 1 -0.000048189 0.000046107 0.000000676 6 8 -0.000046924 -0.000078631 0.000100080 7 8 -0.000061345 -0.000108808 0.000052974 ------------------------------------------------------------------- Cartesian Forces: Max 0.000138506 RMS 0.000065930 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000154411 RMS 0.000074940 Search for a local minimum. Step number 11 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 7 8 10 9 11 DE= -4.67D-05 DEPred=-4.10D-05 R= 1.14D+00 TightC=F SS= 1.41D+00 RLast= 1.35D-01 DXNew= 1.2256D+00 4.0467D-01 Trust test= 1.14D+00 RLast= 1.35D-01 DXMaxT set to 7.29D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30041 R2 -0.00447 0.30041 R3 0.00400 0.00400 0.44071 R4 0.00400 0.00400 0.13583 0.44071 R5 0.00603 0.00603 -0.02788 -0.02788 0.42612 R6 0.00603 0.00603 -0.02788 -0.02788 0.02736 A1 0.00729 0.00729 -0.02671 -0.02671 0.00359 A2 -0.00213 -0.00213 -0.01225 -0.01225 0.00579 A3 -0.00057 -0.00057 0.00022 0.00022 -0.00294 A4 -0.00057 -0.00057 0.00022 0.00022 -0.00294 A5 -0.00213 -0.00213 -0.01225 -0.01225 0.00579 A6 -0.00263 -0.00264 0.03429 0.03429 -0.01027 A7 0.02141 0.02141 -0.00455 -0.00455 0.00904 A8 0.02141 0.02141 -0.00455 -0.00455 0.00904 D1 0.00118 0.00119 -0.00740 -0.00740 0.00488 D2 0.01547 0.01547 0.02762 0.02762 -0.00834 D3 -0.01322 -0.01322 -0.02083 -0.02083 0.00399 D4 0.00118 0.00118 -0.00740 -0.00740 0.00488 D5 -0.01322 -0.01322 -0.02083 -0.02083 0.00399 D6 0.01547 0.01547 0.02762 0.02762 -0.00834 R6 A1 A2 A3 A4 R6 0.42612 A1 0.00359 0.27773 A2 0.00579 -0.01319 0.24480 A3 -0.00294 -0.02346 0.00735 0.24507 A4 -0.00294 -0.02346 0.00735 -0.00493 0.24507 A5 0.00579 -0.01319 -0.00520 0.00735 0.00735 A6 -0.01027 0.04245 0.00578 0.01148 0.01148 A7 0.00904 -0.00152 0.00659 -0.00106 -0.00106 A8 0.00904 -0.00152 0.00659 -0.00106 -0.00106 D1 0.00488 -0.00388 0.00109 -0.00056 -0.00056 D2 -0.00834 0.03435 -0.00779 0.00929 0.00929 D3 0.00399 -0.03139 0.00166 -0.00263 -0.00263 D4 0.00488 -0.00388 0.00109 -0.00056 -0.00056 D5 0.00399 -0.03139 0.00166 -0.00263 -0.00263 D6 -0.00834 0.03435 -0.00779 0.00929 0.00929 A5 A6 A7 A8 D1 A5 0.24480 A6 0.00578 0.19296 A7 0.00659 -0.00932 0.15381 A8 0.00659 -0.00932 -0.00619 0.15381 D1 0.00109 0.00156 0.00049 0.00050 0.00812 D2 -0.00779 -0.02615 0.00225 0.00225 -0.00271 D3 0.00166 0.02345 -0.00085 -0.00085 0.00129 D4 0.00109 0.00156 0.00050 0.00050 0.00177 D5 0.00166 0.02345 -0.00085 -0.00085 0.00129 D6 -0.00779 -0.02615 0.00225 0.00225 -0.00271 D2 D3 D4 D5 D6 D2 0.02565 D3 -0.01730 0.01946 D4 -0.00271 0.00129 0.00812 D5 -0.01730 0.01311 0.00129 0.01946 D6 0.01930 -0.01730 -0.00271 -0.01730 0.02565 ITU= 1 -1 1 1 1 1 1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00379 0.00635 0.13233 0.14946 0.16000 Eigenvalues --- 0.16163 0.17880 0.20232 0.30037 0.30488 Eigenvalues --- 0.30488 0.32987 0.39876 0.43497 0.60080 RFO step: Lambda=-4.80936486D-07 EMin= 3.78626684D-03 Quartic linear search produced a step of 0.00344. Iteration 1 RMS(Cart)= 0.00098222 RMS(Int)= 0.00000061 Iteration 2 RMS(Cart)= 0.00000050 RMS(Int)= 0.00000003 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.02769 -0.00009 0.00001 -0.00025 -0.00025 3.02745 R2 3.02769 -0.00009 0.00001 -0.00025 -0.00025 3.02745 R3 2.69962 -0.00006 0.00000 -0.00010 -0.00010 2.69952 R4 2.69962 -0.00006 0.00000 -0.00010 -0.00010 2.69952 R5 1.83729 0.00005 0.00000 0.00014 0.00014 1.83742 R6 1.83729 0.00005 0.00000 0.00014 0.00014 1.83742 A1 1.77483 0.00012 -0.00002 0.00035 0.00033 1.77516 A2 1.83709 -0.00011 0.00002 -0.00046 -0.00044 1.83664 A3 1.89954 -0.00003 -0.00002 -0.00010 -0.00012 1.89943 A4 1.89954 -0.00003 -0.00002 -0.00010 -0.00012 1.89943 A5 1.83709 -0.00011 0.00002 -0.00046 -0.00044 1.83664 A6 2.17648 0.00015 0.00000 0.00075 0.00075 2.17723 A7 1.88197 -0.00007 -0.00002 -0.00035 -0.00037 1.88160 A8 1.88197 -0.00007 -0.00002 -0.00035 -0.00037 1.88160 D1 1.42173 -0.00001 0.00020 0.00118 0.00138 1.42311 D2 -2.88112 -0.00003 0.00018 0.00104 0.00122 -2.87990 D3 -0.51146 0.00006 0.00019 0.00158 0.00177 -0.50970 D4 1.42173 -0.00001 0.00020 0.00118 0.00138 1.42311 D5 -0.51146 0.00006 0.00019 0.00158 0.00177 -0.50970 D6 -2.88112 -0.00003 0.00018 0.00104 0.00122 -2.87990 Item Value Threshold Converged? Maximum Force 0.000154 0.000450 YES RMS Force 0.000075 0.000300 YES Maximum Displacement 0.002312 0.001800 NO RMS Displacement 0.000982 0.001200 YES Predicted change in Energy=-2.403457D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.098633 0.170843 -0.139492 2 8 0 -0.068385 0.137649 1.453488 3 1 0 0.656474 -0.398618 1.817367 4 8 0 -0.560111 -1.226253 -0.564651 5 1 0 -1.524500 -1.104873 -0.589778 6 8 0 -0.746833 1.233279 -0.583447 7 8 0 1.484957 0.045218 -0.460436 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.602055 0.000000 3 H 2.113000 0.972323 0.000000 4 O 1.602055 2.484936 2.799834 0.000000 5 H 2.113000 2.799834 3.324123 0.972323 0.000000 6 O 1.428524 2.410353 3.224325 2.466682 2.464094 7 O 1.428524 2.466682 2.464094 2.410353 3.224325 6 7 6 O 0.000000 7 O 2.531306 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.163850 2 8 0 1.049084 0.665695 0.847513 3 1 0 1.661792 -0.029960 1.140880 4 8 0 -1.049083 -0.665696 0.847512 5 1 0 -1.661791 0.029959 1.140880 6 8 0 -0.630798 1.097257 -0.826271 7 8 0 0.630798 -1.097256 -0.826273 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0072835 4.9662816 4.7589499 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 287.9284286926 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.90D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000001 0.000000 0.000123 Ang= -0.01 deg. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.200156943 A.U. after 8 cycles NFock= 8 Conv=0.34D-08 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.13426159D+02 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 10 to 15 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 2: I= 16 to 21 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. JobTyp=1 Pass 3: I= 22 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4000919778D-01 E2= -0.1432879593D+00 alpha-beta T2 = 0.1983653036D+00 E2= -0.7484516811D+00 beta-beta T2 = 0.4000919778D-01 E2= -0.1432879593D+00 ANorm= 0.1130656313D+01 E2 = -0.1035027600D+01 EUMP2 = -0.69923518454245D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.24D-02 NDo= 1 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.28D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.79D-04 Max=5.50D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.70D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.71D-05 Max=6.66D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.27D-05 Max=1.36D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.62D-06 Max=5.14D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.19D-07 Max=8.78D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.92D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.43D-08 Max=3.36D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.43D-09 Max=6.83D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.47D-09 Max=1.47D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.94D-10 Max=2.60D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.23D-11 Max=4.99D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Calling FoFJK, ICntrl= 10002127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.000006305 -0.000010816 0.000008848 2 8 0.000028813 0.000002223 0.000015730 3 1 -0.000008381 0.000003044 -0.000003243 4 8 -0.000025348 0.000003794 -0.000020641 5 1 0.000008871 -0.000002193 0.000002546 6 8 -0.000033973 0.000009232 -0.000017551 7 8 0.000036323 -0.000005283 0.000014311 ------------------------------------------------------------------- Cartesian Forces: Max 0.000036323 RMS 0.000016446 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000035631 RMS 0.000019182 Search for a local minimum. Step number 12 out of a maximum of 30 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 7 8 10 9 11 12 DE= -2.43D-07 DEPred=-2.40D-07 R= 1.01D+00 Trust test= 1.01D+00 RLast= 3.82D-03 DXMaxT set to 7.29D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30454 R2 -0.00034 0.30454 R3 0.01180 0.01180 0.44996 R4 0.01182 0.01182 0.14509 0.44999 R5 0.00271 0.00271 -0.03257 -0.03258 0.42822 R6 0.00271 0.00271 -0.03257 -0.03258 0.02946 A1 0.01138 0.01138 -0.02897 -0.02898 0.00135 A2 -0.00019 -0.00019 -0.00548 -0.00546 0.00438 A3 -0.00610 -0.00610 -0.00229 -0.00229 -0.00056 A4 -0.00610 -0.00610 -0.00229 -0.00229 -0.00056 A5 -0.00019 -0.00019 -0.00548 -0.00546 0.00438 A6 0.00107 0.00107 0.02862 0.02860 -0.01077 A7 0.02318 0.02318 0.00103 0.00104 0.00702 A8 0.02318 0.02318 0.00103 0.00104 0.00702 D1 0.00831 0.00831 -0.00079 -0.00078 -0.00037 D2 0.01404 0.01404 0.02710 0.02710 -0.00696 D3 -0.02009 -0.02009 -0.02872 -0.02873 0.00854 D4 0.00831 0.00831 -0.00079 -0.00078 -0.00037 D5 -0.02008 -0.02008 -0.02872 -0.02873 0.00854 D6 0.01404 0.01404 0.02710 0.02710 -0.00696 R6 A1 A2 A3 A4 R6 0.42822 A1 0.00135 0.27225 A2 0.00439 -0.00797 0.24401 A3 -0.00056 -0.01690 0.00116 0.24209 A4 -0.00056 -0.01690 0.00116 -0.00791 0.24209 A5 0.00438 -0.00797 -0.00598 0.00116 0.00116 A6 -0.01077 0.02589 0.01463 0.02287 0.02287 A7 0.00702 0.00322 0.00654 -0.00615 -0.00615 A8 0.00702 0.00322 0.00655 -0.00615 -0.00615 D1 -0.00037 -0.00848 0.00944 -0.00094 -0.00094 D2 -0.00696 0.03674 -0.01052 0.00831 0.00831 D3 0.00854 -0.02914 -0.00481 -0.00038 -0.00038 D4 -0.00037 -0.00848 0.00944 -0.00094 -0.00094 D5 0.00854 -0.02914 -0.00481 -0.00038 -0.00038 D6 -0.00696 0.03674 -0.01052 0.00831 0.00831 A5 A6 A7 A8 D1 A5 0.24402 A6 0.01463 0.16857 A7 0.00655 -0.00345 0.15391 A8 0.00655 -0.00345 -0.00609 0.15391 D1 0.00944 -0.00929 0.00593 0.00593 0.00856 D2 -0.01052 -0.02115 0.00101 0.00101 -0.00029 D3 -0.00482 0.02919 -0.00574 -0.00574 -0.00317 D4 0.00944 -0.00929 0.00593 0.00593 0.00221 D5 -0.00481 0.02919 -0.00574 -0.00574 -0.00317 D6 -0.01052 -0.02115 0.00101 0.00101 -0.00029 D2 D3 D4 D5 D6 D2 0.02398 D3 -0.01776 0.02599 D4 -0.00029 -0.00317 0.00856 D5 -0.01776 0.01964 -0.00317 0.02599 D6 0.01764 -0.01776 -0.00029 -0.01776 0.02399 ITU= 0 1 -1 1 1 1 1 1 1 0 1 0 Eigenvalues --- 0.00384 0.00635 0.13116 0.14946 0.16000 Eigenvalues --- 0.16165 0.16608 0.21550 0.27872 0.30488 Eigenvalues --- 0.30488 0.34369 0.39876 0.43520 0.62304 En-DIIS/RFO-DIIS IScMMF= 0 using points: 12 11 RFO step: Lambda=-1.37671931D-08. DidBck=F Rises=F RFO-DIIS coefs: 0.99512 0.00488 Iteration 1 RMS(Cart)= 0.00013374 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.02745 0.00001 0.00000 0.00002 0.00003 3.02747 R2 3.02745 0.00001 0.00000 0.00002 0.00003 3.02747 R3 2.69952 0.00003 0.00000 0.00006 0.00006 2.69958 R4 2.69952 0.00003 0.00000 0.00006 0.00006 2.69958 R5 1.83742 -0.00001 0.00000 -0.00001 -0.00001 1.83741 R6 1.83742 -0.00001 0.00000 -0.00001 -0.00001 1.83741 A1 1.77516 0.00004 0.00000 0.00013 0.00012 1.77528 A2 1.83664 0.00001 0.00000 0.00005 0.00005 1.83669 A3 1.89943 -0.00004 0.00000 -0.00017 -0.00017 1.89926 A4 1.89943 -0.00004 0.00000 -0.00017 -0.00017 1.89926 A5 1.83664 0.00001 0.00000 0.00005 0.00005 1.83669 A6 2.17723 0.00002 0.00000 0.00013 0.00012 2.17736 A7 1.88160 0.00000 0.00000 -0.00002 -0.00002 1.88158 A8 1.88160 0.00000 0.00000 -0.00002 -0.00002 1.88158 D1 1.42311 0.00001 -0.00001 0.00000 -0.00001 1.42310 D2 -2.87990 -0.00001 -0.00001 -0.00012 -0.00013 -2.88003 D3 -0.50970 0.00000 -0.00001 -0.00005 -0.00006 -0.50975 D4 1.42311 0.00001 -0.00001 0.00000 -0.00001 1.42310 D5 -0.50970 0.00000 -0.00001 -0.00005 -0.00006 -0.50975 D6 -2.87990 -0.00001 -0.00001 -0.00012 -0.00013 -2.88003 Item Value Threshold Converged? Maximum Force 0.000036 0.000450 YES RMS Force 0.000019 0.000300 YES Maximum Displacement 0.000301 0.001800 YES RMS Displacement 0.000134 0.001200 YES Predicted change in Energy=-1.363821D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.6021 -DE/DX = 0.0 ! ! R2 R(1,4) 1.6021 -DE/DX = 0.0 ! ! R3 R(1,6) 1.4285 -DE/DX = 0.0 ! ! R4 R(1,7) 1.4285 -DE/DX = 0.0 ! ! R5 R(2,3) 0.9723 -DE/DX = 0.0 ! ! R6 R(4,5) 0.9723 -DE/DX = 0.0 ! ! A1 A(2,1,4) 101.7092 -DE/DX = 0.0 ! ! A2 A(2,1,6) 105.2319 -DE/DX = 0.0 ! ! A3 A(2,1,7) 108.8291 -DE/DX = 0.0 ! ! A4 A(4,1,6) 108.8291 -DE/DX = 0.0 ! ! A5 A(4,1,7) 105.2319 -DE/DX = 0.0 ! ! A6 A(6,1,7) 124.7464 -DE/DX = 0.0 ! ! A7 A(1,2,3) 107.8078 -DE/DX = 0.0 ! ! A8 A(1,4,5) 107.8078 -DE/DX = 0.0 ! ! D1 D(4,1,2,3) 81.5382 -DE/DX = 0.0 ! ! D2 D(6,1,2,3) -165.0061 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) -29.2034 -DE/DX = 0.0 ! ! D4 D(2,1,4,5) 81.5382 -DE/DX = 0.0 ! ! D5 D(6,1,4,5) -29.2034 -DE/DX = 0.0 ! ! D6 D(7,1,4,5) -165.0061 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.098633 0.170843 -0.139492 2 8 0 -0.068385 0.137649 1.453488 3 1 0 0.656474 -0.398618 1.817367 4 8 0 -0.560111 -1.226253 -0.564651 5 1 0 -1.524500 -1.104873 -0.589778 6 8 0 -0.746833 1.233279 -0.583447 7 8 0 1.484957 0.045218 -0.460436 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.602055 0.000000 3 H 2.113000 0.972323 0.000000 4 O 1.602055 2.484936 2.799834 0.000000 5 H 2.113000 2.799834 3.324123 0.972323 0.000000 6 O 1.428524 2.410353 3.224325 2.466682 2.464094 7 O 1.428524 2.466682 2.464094 2.410353 3.224325 6 7 6 O 0.000000 7 O 2.531306 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.163850 2 8 0 1.049084 0.665695 0.847513 3 1 0 1.661792 -0.029960 1.140880 4 8 0 -1.049083 -0.665696 0.847512 5 1 0 -1.661791 0.029959 1.140880 6 8 0 -0.630798 1.097257 -0.826271 7 8 0 0.630798 -1.097256 -0.826273 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0072835 4.9662816 4.7589499 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -92.27765 -20.66139 -20.66137 -20.59523 -20.59521 Alpha occ. eigenvalues -- -9.24112 -6.92788 -6.92749 -6.92693 -1.57363 Alpha occ. eigenvalues -- -1.44063 -1.41656 -1.40211 -0.93184 -0.83630 Alpha occ. eigenvalues -- -0.75337 -0.73853 -0.70884 -0.65057 -0.63329 Alpha occ. eigenvalues -- -0.58201 -0.57133 -0.53553 -0.53309 -0.51377 Alpha virt. eigenvalues -- 0.05364 0.08227 0.10181 0.10383 0.17657 Alpha virt. eigenvalues -- 0.19759 0.20992 0.21424 0.25122 0.25323 Alpha virt. eigenvalues -- 0.25334 0.27139 0.28843 0.29054 0.31618 Alpha virt. eigenvalues -- 0.32343 0.32534 0.33046 0.34748 0.36409 Alpha virt. eigenvalues -- 0.36489 0.37302 0.38702 0.41788 0.45078 Alpha virt. eigenvalues -- 0.47028 0.48408 0.49881 0.51087 0.60069 Alpha virt. eigenvalues -- 0.64367 0.69207 0.73724 0.88437 0.95239 Alpha virt. eigenvalues -- 1.00216 1.01251 1.12467 1.14211 1.17540 Alpha virt. eigenvalues -- 1.19518 1.24402 1.30998 1.31099 1.33497 Alpha virt. eigenvalues -- 1.35097 1.39109 1.40150 1.40644 1.41223 Alpha virt. eigenvalues -- 1.49015 1.52913 1.55894 1.66358 1.69153 Alpha virt. eigenvalues -- 1.69224 1.70487 1.73187 1.74458 1.74471 Alpha virt. eigenvalues -- 1.79058 1.88114 1.90224 1.91534 1.98519 Alpha virt. eigenvalues -- 2.01105 2.03279 2.14117 2.15373 2.17377 Alpha virt. eigenvalues -- 2.21768 2.25474 2.30139 2.33853 2.43165 Alpha virt. eigenvalues -- 2.49032 2.53055 2.61374 2.63891 2.65504 Alpha virt. eigenvalues -- 2.78577 2.84505 2.89337 2.97134 3.00955 Alpha virt. eigenvalues -- 3.12818 3.17628 3.27989 3.30425 5.42315 Alpha virt. eigenvalues -- 5.47716 5.49226 5.52346 5.53106 5.54385 Alpha virt. eigenvalues -- 5.54692 5.64040 5.75978 5.88171 6.06723 Alpha virt. eigenvalues -- 6.08567 7.22518 7.24252 7.26338 7.26638 Alpha virt. eigenvalues -- 7.28420 7.29237 7.34820 7.37481 7.39202 Alpha virt. eigenvalues -- 7.44983 7.45284 7.48519 7.50131 7.56967 Alpha virt. eigenvalues -- 7.65846 7.70753 7.77158 7.77247 7.85645 Alpha virt. eigenvalues -- 7.89920 8.93386 18.43457 18.44736 18.60238 Alpha virt. eigenvalues -- 51.54759 51.54870 51.55464 51.62737 192.71418 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 S 12.962703 0.209231 0.022445 0.209231 0.022445 0.482721 2 O 0.209231 7.986108 0.285205 0.064412 -0.009066 -0.024189 3 H 0.022445 0.285205 0.384196 -0.009066 0.000595 0.004618 4 O 0.209231 0.064412 -0.009066 7.986108 0.285205 -0.008275 5 H 0.022445 -0.009066 0.000595 0.285205 0.384196 -0.009620 6 O 0.482721 -0.024189 0.004618 -0.008275 -0.009620 8.238343 7 O 0.482721 -0.008275 -0.009620 -0.024189 0.004618 -0.061145 7 1 S 0.482721 2 O -0.008275 3 H -0.009620 4 O -0.024189 5 H 0.004618 6 O -0.061145 7 O 8.238343 Mulliken charges: 1 1 S 1.608504 2 O -0.503426 3 H 0.321627 4 O -0.503426 5 H 0.321627 6 O -0.622453 7 O -0.622453 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.608504 2 O -0.181800 4 O -0.181800 6 O -0.622453 7 O -0.622453 Electronic spatial extent (au): = 368.2031 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 3.4801 Tot= 3.4801 Quadrupole moment (field-independent basis, Debye-Ang): XX= -28.9810 YY= -41.0042 ZZ= -34.7437 XY= -0.6585 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 5.9286 YY= -6.0945 ZZ= 0.1659 XY= -0.6585 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 7.0917 XYY= 0.0000 XXY= 0.0000 XXZ= 12.0896 XZZ= 0.0000 YZZ= 0.0000 YYZ= 2.8390 XYZ= -5.9068 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -114.8522 YYYY= -147.3403 ZZZZ= -130.6991 XXXY= -4.1183 XXXZ= 0.0000 YYYX= 0.8692 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -51.6427 XXZZ= -32.7889 YYZZ= -49.7374 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -1.2159 N-N= 2.879284286926D+02 E-N=-2.232552114480D+03 KE= 6.975662978633D+02 B after Tr= -0.084931 -0.147110 0.120116 Rot= 0.999493 -0.012999 -0.022522 0.018388 Ang= -3.65 deg. Final structure in terms of initial Z-matrix: S O,1,B1 H,2,B2,1,A1 O,1,B3,2,A2,3,D1,0 H,4,B4,1,A3,2,D2,0 O,1,B5,2,A4,3,D3,0 O,1,B6,2,A5,3,D4,0 Variables: B1=1.60205544 B2=0.97232281 B3=1.60205544 B4=0.97232281 B5=1.4285239 B6=1.42852384 A1=107.80780578 A2=101.70917017 A3=107.80780518 A4=105.23191919 A5=108.82906464 D1=81.53818996 D2=81.538191 D3=-165.00611523 D4=-29.20340105 1\1\GINC-COMPUTE-0-3\FOpt\RMP2-FC\6-311+G(2d,p)\H2O4S1\ZDANOVSKAIA\18- May-2017\0\\#N MP2/6-311+G(2d,p) OPT FREQ Geom=Connectivity\\Sulfuric Acid\\0,1\S,0.0986332574,0.1708427732,-0.1394923872\O,-0.0683848574,0. 1376488802,1.4534874493\H,0.6564744156,-0.398618478,1.8173665423\O,-0. 5601105842,-1.2262535252,-0.5646513202\H,-1.524500021,-1.1048728476,-0 .5897786431\O,-0.7468334739,1.2332788225,-0.5834475316\O,1.4849571192, 0.0452174814,-0.4604360081\\Version=EM64L-G09RevD.01\State=1-A\HF=-698 .2001569\MP2=-699.2351845\RMSD=3.401e-09\RMSF=1.645e-05\Dipole=-0.4968 91,-0.8606578,0.7027204\PG=C01 [X(H2O4S1)]\\@ THE ONLY TROUBLE WITH A SURE THING IS THE UNCERTAINTY. -- FROM A TEABAG (BELONGING TO W.H.?) Job cpu time: 0 days 0 hours 55 minutes 18.0 seconds. File lengths (MBytes): RWF= 15 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 18 20:24:54 2017. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RMP2(FC)/6-311+G(2d,p) Freq ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=4,6=6,7=112,11=1,14=-4,16=1,25=1,30=1,70=2,71=2,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=3,8=1,10=2,19=11,30=-1/1; 9/15=3,16=-3/6; 11/6=1,8=1,15=11,17=12,24=-1,27=1,28=-2,29=300,32=6,42=3/1,2,10; 10/6=2,21=1/2; 8/6=4,8=1,10=2,19=11,30=-1/11,4; 10/5=1,20=4/2; 11/12=2,14=11,16=1,17=2,28=-2,42=3/2,10,12; 6/7=2,8=2,9=2,10=2/1; 7/8=1,10=1,12=2,25=1,44=2/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" ------------- Sulfuric Acid ------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. S,0,0.0986333255,0.1708430602,-0.1394919875 O,0,-0.0683847893,0.1376491673,1.453487849 H,0,0.6564744837,-0.3986181909,1.8173669421 O,0,-0.5601105161,-1.2262532381,-0.5646509205 H,0,-1.5244999529,-1.1048725606,-0.5897782433 O,0,-0.7468334058,1.2332791096,-0.5834471319 O,0,1.4849571873,0.0452177684,-0.4604356083 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.6021 calculate D2E/DX2 analytically ! ! R2 R(1,4) 1.6021 calculate D2E/DX2 analytically ! ! R3 R(1,6) 1.4285 calculate D2E/DX2 analytically ! ! R4 R(1,7) 1.4285 calculate D2E/DX2 analytically ! ! R5 R(2,3) 0.9723 calculate D2E/DX2 analytically ! ! R6 R(4,5) 0.9723 calculate D2E/DX2 analytically ! ! A1 A(2,1,4) 101.7092 calculate D2E/DX2 analytically ! ! A2 A(2,1,6) 105.2319 calculate D2E/DX2 analytically ! ! A3 A(2,1,7) 108.8291 calculate D2E/DX2 analytically ! ! A4 A(4,1,6) 108.8291 calculate D2E/DX2 analytically ! ! A5 A(4,1,7) 105.2319 calculate D2E/DX2 analytically ! ! A6 A(6,1,7) 124.7464 calculate D2E/DX2 analytically ! ! A7 A(1,2,3) 107.8078 calculate D2E/DX2 analytically ! ! A8 A(1,4,5) 107.8078 calculate D2E/DX2 analytically ! ! D1 D(4,1,2,3) 81.5382 calculate D2E/DX2 analytically ! ! D2 D(6,1,2,3) -165.0061 calculate D2E/DX2 analytically ! ! D3 D(7,1,2,3) -29.2034 calculate D2E/DX2 analytically ! ! D4 D(2,1,4,5) 81.5382 calculate D2E/DX2 analytically ! ! D5 D(6,1,4,5) -29.2034 calculate D2E/DX2 analytically ! ! D6 D(7,1,4,5) -165.0061 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.098633 0.170843 -0.139492 2 8 0 -0.068385 0.137649 1.453488 3 1 0 0.656474 -0.398618 1.817367 4 8 0 -0.560111 -1.226253 -0.564651 5 1 0 -1.524500 -1.104873 -0.589778 6 8 0 -0.746833 1.233279 -0.583447 7 8 0 1.484957 0.045218 -0.460436 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 S 0.000000 2 O 1.602055 0.000000 3 H 2.113000 0.972323 0.000000 4 O 1.602055 2.484936 2.799834 0.000000 5 H 2.113000 2.799834 3.324123 0.972323 0.000000 6 O 1.428524 2.410353 3.224325 2.466682 2.464094 7 O 1.428524 2.466682 2.464094 2.410353 3.224325 6 7 6 O 0.000000 7 O 2.531306 0.000000 Stoichiometry H2O4S Framework group C1[X(H2O4S)] Deg. of freedom 15 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 -0.163850 2 8 0 1.049084 0.665695 0.847513 3 1 0 1.661792 -0.029960 1.140880 4 8 0 -1.049083 -0.665696 0.847512 5 1 0 -1.661791 0.029959 1.140880 6 8 0 -0.630798 1.097257 -0.826271 7 8 0 0.630798 -1.097256 -0.826273 --------------------------------------------------------------------- Rotational constants (GHZ): 5.0072835 4.9662816 4.7589499 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A symmetry. There are 155 symmetry adapted basis functions of A symmetry. 155 basis functions, 240 primitive gaussians, 165 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 287.9284286926 Hartrees. NAtoms= 7 NActive= 7 NUniq= 7 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 155 RedAO= T EigKep= 6.90D-04 NBF= 155 NBsUse= 155 1.00D-06 EigRej= -1.00D+00 NBFU= 155 Initial guess from the checkpoint file: "/scratch/webmo-13362/124451/Gau-32191.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=75480574. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RHF) = -698.200156943 A.U. after 1 cycles NFock= 1 Conv=0.96D-09 -V/T= 2.0009 ExpMin= 4.05D-02 ExpMax= 9.34D+04 ExpMxC= 3.17D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 10 155 NBasis= 155 NAE= 25 NBE= 25 NFC= 9 NFV= 0 NROrb= 146 NOA= 16 NOB= 16 NVA= 130 NVB= 130 **** Warning!!: The largest alpha MO coefficient is 0.13426159D+02 Disk-based method using ON**2 memory for 16 occupieds at a time. Permanent disk used for amplitudes= 13078000 words. Estimated scratch disk usage= 140116176 words. Actual scratch disk usage= 127656144 words. JobTyp=1 Pass 1: I= 10 to 25 NPSUse= 12 ParTrn=T ParDer=T DoDerP=T. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4000919715D-01 E2= -0.1432879588D+00 alpha-beta T2 = 0.1983653010D+00 E2= -0.7484516793D+00 beta-beta T2 = 0.4000919715D-01 E2= -0.1432879588D+00 ANorm= 0.1130656312D+01 E2 = -0.1035027597D+01 EUMP2 = -0.69923518453955D+03 G2DrvN: will do 8 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=75378530. There are 24 degrees of freedom in the 1st order CPHF. IDoFFX=6 NUNeed= 24. 21 vectors produced by pass 0 Test12= 1.35D-14 4.17D-09 XBig12= 7.50D+00 6.63D-01. AX will form 21 AO Fock derivatives at one time. 21 vectors produced by pass 1 Test12= 1.35D-14 4.17D-09 XBig12= 7.53D-01 1.47D-01. 21 vectors produced by pass 2 Test12= 1.35D-14 4.17D-09 XBig12= 1.53D-02 2.60D-02. 21 vectors produced by pass 3 Test12= 1.35D-14 4.17D-09 XBig12= 5.92D-04 4.23D-03. 21 vectors produced by pass 4 Test12= 1.35D-14 4.17D-09 XBig12= 1.32D-05 7.37D-04. 21 vectors produced by pass 5 Test12= 1.35D-14 4.17D-09 XBig12= 1.07D-07 6.98D-05. 21 vectors produced by pass 6 Test12= 1.35D-14 4.17D-09 XBig12= 6.45D-10 4.04D-06. 14 vectors produced by pass 7 Test12= 1.35D-14 4.17D-09 XBig12= 5.94D-12 3.22D-07. 3 vectors produced by pass 8 Test12= 1.35D-14 4.17D-09 XBig12= 4.69D-14 3.36D-08. InvSVY: IOpt=1 It= 1 EMax= 1.33D-15 Solved reduced A of dimension 164 with 24 vectors. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. MDV= 268435456. Form MO integral derivatives with frozen-active canonical formalism. Discarding MO integrals. Reordered first order wavefunction length = 21125000 In DefCFB: NBatch= 1 ICI= 25 ICA=130 LFMax= 33 Large arrays: LIAPS= 332475000 LIARS= 138888750 words. Semi-Direct transformation. ModeAB= 2 MOrb= 25 LenV= 267769112 LASXX= 41349400 LTotXX= 41349400 LenRXX= 41349400 LTotAB= 42165500 MaxLAS= 53068125 LenRXY= 53068125 NonZer= 82698800 LenScr= 124802048 LnRSAI= 0 LnScr1= 0 LExtra= 0 Total= 219219573 MaxDsk= -1 SrtSym= F ITran= 4 JobTyp=0 Pass 1: I= 1 to 25. (rs|ai) integrals will be sorted in core. SymMOI: orbitals are not symmetric. Spin components of T(2) and E(2): alpha-alpha T2 = 0.4000919715D-01 E2= -0.1432879588D+00 alpha-beta T2 = 0.1983653010D+00 E2= -0.7484516793D+00 beta-beta T2 = 0.4000919715D-01 E2= -0.1432879588D+00 ANorm= 0.1598989490D+01 E2 = -0.1035027597D+01 EUMP2 = -0.69923518453955D+03 IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=5.30D-03 Max=6.24D-02 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=1.18D-03 Max=1.28D-02 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=4.79D-04 Max=5.50D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=1.67D-04 Max=1.70D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=4.71D-05 Max=6.66D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=1.27D-05 Max=1.36D-04 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=4.62D-06 Max=5.14D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=9.19D-07 Max=8.78D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.92D-07 Max=1.62D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=3.43D-08 Max=3.36D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.43D-09 Max=6.83D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=1.47D-09 Max=1.47D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=2.94D-10 Max=2.60D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 0 RMS=5.23D-11 Max=4.99D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 13 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 8 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. R2 and R3 integrals will be kept in memory, NReq= 189853785. DD1Dir will call FoFMem 1 times, MxPair= 650 NAB= 325 NAA= 0 NBB= 0. Discarding MO integrals. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -92.27765 -20.66139 -20.66137 -20.59523 -20.59521 Alpha occ. eigenvalues -- -9.24112 -6.92788 -6.92749 -6.92693 -1.57363 Alpha occ. eigenvalues -- -1.44063 -1.41656 -1.40211 -0.93184 -0.83630 Alpha occ. eigenvalues -- -0.75337 -0.73853 -0.70884 -0.65057 -0.63329 Alpha occ. eigenvalues -- -0.58201 -0.57133 -0.53553 -0.53309 -0.51377 Alpha virt. eigenvalues -- 0.05364 0.08227 0.10181 0.10383 0.17657 Alpha virt. eigenvalues -- 0.19759 0.20992 0.21424 0.25122 0.25323 Alpha virt. eigenvalues -- 0.25334 0.27139 0.28843 0.29054 0.31618 Alpha virt. eigenvalues -- 0.32343 0.32534 0.33046 0.34748 0.36409 Alpha virt. eigenvalues -- 0.36489 0.37302 0.38702 0.41788 0.45078 Alpha virt. eigenvalues -- 0.47028 0.48408 0.49881 0.51087 0.60069 Alpha virt. eigenvalues -- 0.64367 0.69207 0.73724 0.88437 0.95239 Alpha virt. eigenvalues -- 1.00216 1.01251 1.12467 1.14211 1.17540 Alpha virt. eigenvalues -- 1.19518 1.24402 1.30998 1.31099 1.33497 Alpha virt. eigenvalues -- 1.35097 1.39109 1.40150 1.40644 1.41223 Alpha virt. eigenvalues -- 1.49015 1.52913 1.55894 1.66358 1.69153 Alpha virt. eigenvalues -- 1.69224 1.70487 1.73187 1.74458 1.74471 Alpha virt. eigenvalues -- 1.79058 1.88114 1.90224 1.91534 1.98519 Alpha virt. eigenvalues -- 2.01105 2.03279 2.14117 2.15373 2.17377 Alpha virt. eigenvalues -- 2.21768 2.25474 2.30139 2.33853 2.43165 Alpha virt. eigenvalues -- 2.49032 2.53055 2.61374 2.63891 2.65504 Alpha virt. eigenvalues -- 2.78577 2.84505 2.89337 2.97134 3.00955 Alpha virt. eigenvalues -- 3.12818 3.17628 3.27989 3.30425 5.42315 Alpha virt. eigenvalues -- 5.47716 5.49226 5.52346 5.53106 5.54385 Alpha virt. eigenvalues -- 5.54692 5.64040 5.75978 5.88171 6.06723 Alpha virt. eigenvalues -- 6.08567 7.22518 7.24252 7.26338 7.26638 Alpha virt. eigenvalues -- 7.28420 7.29237 7.34820 7.37481 7.39202 Alpha virt. eigenvalues -- 7.44983 7.45284 7.48519 7.50131 7.56967 Alpha virt. eigenvalues -- 7.65846 7.70753 7.77158 7.77247 7.85645 Alpha virt. eigenvalues -- 7.89920 8.93386 18.43457 18.44736 18.60238 Alpha virt. eigenvalues -- 51.54759 51.54870 51.55464 51.62737 192.71418 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 S 12.962702 0.209231 0.022445 0.209231 0.022445 0.482721 2 O 0.209231 7.986108 0.285205 0.064412 -0.009066 -0.024189 3 H 0.022445 0.285205 0.384196 -0.009066 0.000595 0.004618 4 O 0.209231 0.064412 -0.009066 7.986108 0.285205 -0.008275 5 H 0.022445 -0.009066 0.000595 0.285205 0.384196 -0.009620 6 O 0.482721 -0.024189 0.004618 -0.008275 -0.009620 8.238343 7 O 0.482721 -0.008275 -0.009620 -0.024189 0.004618 -0.061145 7 1 S 0.482721 2 O -0.008275 3 H -0.009620 4 O -0.024189 5 H 0.004618 6 O -0.061145 7 O 8.238343 Mulliken charges: 1 1 S 1.608504 2 O -0.503426 3 H 0.321627 4 O -0.503426 5 H 0.321627 6 O -0.622453 7 O -0.622453 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.608504 2 O -0.181800 4 O -0.181800 6 O -0.622453 7 O -0.622453 APT charges: 1 1 S 2.398266 2 O -0.791088 3 H 0.319071 4 O -0.791088 5 H 0.319071 6 O -0.727116 7 O -0.727116 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 S 2.398266 2 O -0.472017 4 O -0.472017 6 O -0.727116 7 O -0.727116 Electronic spatial extent (au): = 368.2031 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 3.4801 Tot= 3.4801 Quadrupole moment (field-independent basis, Debye-Ang): XX= -28.9810 YY= -41.0042 ZZ= -34.7437 XY= -0.6585 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 5.9286 YY= -6.0945 ZZ= 0.1659 XY= -0.6585 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 7.0917 XYY= 0.0000 XXY= 0.0000 XXZ= 12.0896 XZZ= 0.0000 YZZ= 0.0000 YYZ= 2.8390 XYZ= -5.9068 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -114.8522 YYYY= -147.3403 ZZZZ= -130.6991 XXXY= -4.1183 XXXZ= 0.0000 YYYX= 0.8692 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -51.6427 XXZZ= -32.7889 YYZZ= -49.7374 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -1.2159 N-N= 2.879284286926D+02 E-N=-2.232552115501D+03 KE= 6.975662984975D+02 Exact polarizability: 35.120 -2.334 35.182 0.000 0.000 33.533 Approx polarizability: 28.176 -2.781 30.361 0.000 0.000 27.149 Calling FoFJK, ICntrl= 10100127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -3.8743 -3.5183 -1.2384 -0.0049 -0.0042 -0.0042 Low frequencies --- 263.6452 339.4886 371.2533 Diagonal vibrational polarizability: 32.4632160 8.2727440 51.9469448 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 A A A Frequencies -- 263.6452 339.4886 371.2533 Red. masses -- 1.3799 1.1253 11.1626 Frc consts -- 0.0565 0.0764 0.9065 IR Inten -- 87.7866 64.1400 4.2821 Atom AN X Y Z X Y Z X Y Z 1 16 0.00 0.00 -0.02 0.02 -0.01 0.00 0.00 0.00 -0.04 2 8 -0.06 0.04 0.02 0.02 0.02 -0.04 -0.15 -0.30 0.31 3 1 -0.42 -0.05 0.56 -0.41 -0.11 0.57 -0.03 -0.38 -0.12 4 8 0.06 -0.04 0.02 0.02 0.02 0.04 0.15 0.30 0.31 5 1 0.42 0.05 0.56 -0.41 -0.11 -0.57 0.03 0.38 -0.12 6 8 0.06 0.02 -0.04 -0.01 0.00 0.03 -0.12 -0.21 -0.27 7 8 -0.06 -0.02 -0.04 -0.01 0.00 -0.03 0.12 0.21 -0.27 4 5 6 A A A Frequencies -- 438.2407 485.6811 533.2135 Red. masses -- 2.7954 4.9395 13.9842 Frc consts -- 0.3163 0.6865 2.3426 IR Inten -- 22.8377 43.5481 43.1820 Atom AN X Y Z X Y Z X Y Z 1 16 0.00 0.00 0.01 -0.07 0.15 0.00 0.00 0.00 0.28 2 8 -0.12 0.08 0.08 0.13 -0.17 -0.01 0.34 0.17 -0.01 3 1 0.40 0.33 -0.41 -0.28 -0.55 -0.04 0.15 0.11 0.28 4 8 0.12 -0.08 0.08 0.13 -0.17 0.01 -0.34 -0.17 -0.01 5 1 -0.40 -0.33 -0.41 -0.28 -0.55 0.04 -0.15 -0.11 0.28 6 8 0.16 0.05 -0.06 -0.04 0.05 -0.23 0.15 -0.31 -0.29 7 8 -0.16 -0.05 -0.06 -0.04 0.05 0.23 -0.15 0.31 -0.29 7 8 9 A A A Frequencies -- 541.0761 801.1702 851.5095 Red. masses -- 14.5199 15.5778 18.6676 Frc consts -- 2.5045 5.8912 7.9747 IR Inten -- 25.1106 124.3514 339.8530 Atom AN X Y Z X Y Z X Y Z 1 16 0.24 0.14 0.00 0.00 0.00 0.31 0.47 0.27 0.00 2 8 0.14 0.09 0.37 -0.35 -0.22 -0.38 -0.38 -0.22 -0.30 3 1 0.17 0.04 0.24 -0.24 0.03 -0.07 -0.10 0.06 -0.23 4 8 0.14 0.09 -0.37 0.35 0.22 -0.38 -0.38 -0.22 0.30 5 1 0.17 0.04 -0.24 0.24 -0.03 -0.07 -0.10 0.06 0.23 6 8 -0.39 -0.23 -0.01 0.13 -0.22 0.07 -0.08 -0.05 0.01 7 8 -0.39 -0.23 0.01 -0.13 0.22 0.07 -0.08 -0.05 -0.01 10 11 12 A A A Frequencies -- 1164.9051 1176.4713 1213.2972 Red. masses -- 1.1254 1.2770 15.2312 Frc consts -- 0.8998 1.0413 13.2105 IR Inten -- 81.4781 92.9317 157.8724 Atom AN X Y Z X Y Z X Y Z 1 16 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 -0.36 2 8 -0.01 0.05 0.01 -0.01 0.06 0.01 0.04 0.00 0.05 3 1 -0.35 -0.45 -0.40 -0.37 -0.45 -0.39 0.20 0.20 0.13 4 8 0.01 -0.05 0.01 -0.01 0.06 -0.01 -0.04 0.00 0.05 5 1 0.35 0.45 -0.40 -0.37 -0.45 0.39 -0.20 -0.20 0.13 6 8 0.02 -0.02 0.01 0.03 -0.05 0.04 0.24 -0.43 0.30 7 8 -0.02 0.02 0.01 0.03 -0.05 -0.04 -0.24 0.43 0.30 13 14 15 A A A Frequencies -- 1465.9230 3762.0767 3766.4139 Red. masses -- 9.0556 1.0653 1.0656 Frc consts -- 11.4654 8.8829 8.9064 IR Inten -- 291.2739 218.0906 63.4630 Atom AN X Y Z X Y Z X Y Z 1 16 -0.19 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 8 0.01 -0.05 -0.01 -0.03 0.03 -0.01 0.03 -0.03 0.01 3 1 0.27 0.35 0.33 0.45 -0.49 0.22 -0.45 0.49 -0.22 4 8 0.01 -0.05 0.01 -0.03 0.03 0.01 -0.03 0.03 0.01 5 1 0.27 0.35 -0.33 0.45 -0.49 -0.22 0.45 -0.49 -0.22 6 8 0.16 -0.28 0.15 0.00 0.00 0.00 0.00 0.00 0.00 7 8 0.16 -0.28 -0.15 0.00 0.00 0.00 0.00 0.00 0.00 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 16 and mass 31.97207 Atom 2 has atomic number 8 and mass 15.99491 Atom 3 has atomic number 1 and mass 1.00783 Atom 4 has atomic number 8 and mass 15.99491 Atom 5 has atomic number 1 and mass 1.00783 Atom 6 has atomic number 8 and mass 15.99491 Atom 7 has atomic number 8 and mass 15.99491 Molecular mass: 97.96738 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 360.42321 363.39888 379.23097 X 0.99285 -0.11934 0.00000 Y 0.11934 0.99285 0.00000 Z 0.00000 0.00000 1.00000 This molecule is an asymmetric top. Rotational symmetry number 1. Rotational temperatures (Kelvin) 0.24031 0.23834 0.22839 Rotational constants (GHZ): 5.00728 4.96628 4.75895 Zero-point vibrational energy 102725.5 (Joules/Mol) 24.55199 (Kcal/Mol) Warning -- explicit consideration of 7 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 379.33 488.45 534.15 630.53 698.79 (Kelvin) 767.17 778.49 1152.70 1225.13 1676.04 1692.68 1745.66 2109.13 5412.78 5419.02 Zero-point correction= 0.039126 (Hartree/Particle) Thermal correction to Energy= 0.044245 Thermal correction to Enthalpy= 0.045189 Thermal correction to Gibbs Free Energy= 0.010891 Sum of electronic and zero-point Energies= -699.196058 Sum of electronic and thermal Energies= -699.190940 Sum of electronic and thermal Enthalpies= -699.189996 Sum of electronic and thermal Free Energies= -699.224293 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 27.764 17.782 72.186 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 39.657 Rotational 0.889 2.981 25.410 Vibrational 25.987 11.821 7.118 Vibration 1 0.670 1.740 1.638 Vibration 2 0.719 1.597 1.215 Vibration 3 0.743 1.531 1.075 Vibration 4 0.798 1.387 0.832 Vibration 5 0.842 1.282 0.695 Vibration 6 0.888 1.177 0.580 Vibration 7 0.896 1.159 0.563 Q Log10(Q) Ln(Q) Total Bot 0.978147D-05 -5.009596 -11.535021 Total V=0 0.970766D+13 12.987115 29.903936 Vib (Bot) 0.321685D-17 -17.492570 -40.278130 Vib (Bot) 1 0.735388D+00 -0.133483 -0.307357 Vib (Bot) 2 0.547132D+00 -0.261908 -0.603065 Vib (Bot) 3 0.489971D+00 -0.309830 -0.713410 Vib (Bot) 4 0.395018D+00 -0.403383 -0.928824 Vib (Bot) 5 0.342673D+00 -0.465120 -1.070979 Vib (Bot) 6 0.299036D+00 -0.524277 -1.207193 Vib (Bot) 7 0.292516D+00 -0.533850 -1.229234 Vib (V=0) 0.319257D+01 0.504141 1.160827 Vib (V=0) 1 0.138927D+01 0.142786 0.328776 Vib (V=0) 2 0.124118D+01 0.093836 0.216066 Vib (V=0) 3 0.120005D+01 0.079200 0.182364 Vib (V=0) 4 0.113721D+01 0.055841 0.128580 Vib (V=0) 5 0.110616D+01 0.043816 0.100891 Vib (V=0) 6 0.108260D+01 0.034468 0.079365 Vib (V=0) 7 0.107928D+01 0.033134 0.076295 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.381134D+08 7.581077 17.456076 Rotational 0.797805D+05 4.901896 11.287034 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.000006315 -0.000010835 0.000008863 2 8 0.000028813 0.000002229 0.000015723 3 1 -0.000008380 0.000003043 -0.000003243 4 8 -0.000025341 0.000003799 -0.000020643 5 1 0.000008870 -0.000002192 0.000002546 6 8 -0.000033963 0.000009232 -0.000017552 7 8 0.000036317 -0.000005277 0.000014306 ------------------------------------------------------------------- Cartesian Forces: Max 0.000036317 RMS 0.000016445 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000035642 RMS 0.000019180 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 R3 R4 R5 R1 0.30089 R2 0.01607 0.30089 R3 0.01132 0.01280 0.70417 R4 0.01280 0.01132 0.00173 0.70417 R5 0.00042 -0.00337 -0.00474 -0.00506 0.50927 R6 -0.00337 0.00042 -0.00506 -0.00474 0.00047 A1 0.02373 0.02373 -0.01281 -0.01281 -0.00480 A2 0.02194 -0.01755 0.01314 -0.00989 0.00476 A3 0.00746 -0.01702 -0.01009 0.01648 -0.00881 A4 -0.01702 0.00746 0.01648 -0.01009 0.00220 A5 -0.01755 0.02194 -0.00989 0.01314 0.00294 A6 -0.01096 -0.01096 0.00003 0.00003 0.00204 A7 0.04654 0.00151 0.00714 0.00400 0.02515 A8 0.00151 0.04654 0.00400 0.00714 0.00008 D1 -0.00153 0.00769 -0.01321 0.00997 -0.00082 D2 -0.00338 0.01897 0.00436 -0.00941 0.00136 D3 0.00488 -0.02129 0.00702 -0.00476 0.00112 D4 0.00769 -0.00153 0.00997 -0.01321 0.00484 D5 -0.02129 0.00488 -0.00476 0.00702 0.00090 D6 0.01897 -0.00338 -0.00941 0.00436 -0.00563 R6 A1 A2 A3 A4 R6 0.50927 A1 -0.00480 0.24198 A2 0.00294 -0.05006 0.14350 A3 0.00220 -0.03905 -0.01447 0.14351 A4 -0.00881 -0.03905 -0.04926 -0.01948 0.14351 A5 0.00476 -0.05006 -0.01489 -0.04926 -0.01447 A6 0.00204 -0.00315 -0.02482 -0.02488 -0.02488 A7 0.00008 0.00095 0.02220 -0.01905 -0.00020 A8 0.02515 0.00095 -0.00456 -0.00020 -0.01905 D1 0.00484 0.00152 -0.00932 0.00857 -0.05304 D2 -0.00563 0.03524 -0.03310 -0.03278 0.07163 D3 0.00090 -0.03628 0.03452 0.03036 -0.01280 D4 -0.00082 0.00152 0.05244 -0.05304 0.00857 D5 0.00112 -0.03628 -0.06785 -0.01280 0.03036 D6 0.00136 0.03524 0.01216 0.07163 -0.03278 A5 A6 A7 A8 D1 A5 0.14350 A6 -0.02482 0.08694 A7 -0.00456 0.00046 0.16082 A8 0.02220 0.00046 -0.00070 0.16082 D1 0.05244 -0.00054 -0.00552 0.01548 0.04170 D2 0.01216 -0.03746 0.00228 -0.00652 -0.01884 D3 -0.06785 0.03722 0.00582 -0.00959 -0.02035 D4 -0.00932 -0.00054 0.01548 -0.00552 -0.02017 D5 0.03452 0.03722 -0.00959 0.00582 0.00814 D6 -0.03310 -0.03746 -0.00652 0.00228 0.00782 D2 D3 D4 D5 D6 D2 0.06162 D3 -0.03649 0.06060 D4 0.00782 0.00814 0.04170 D5 0.00393 -0.00972 -0.02035 0.06060 D6 -0.01017 0.00393 -0.01884 -0.03649 0.06162 ITU= 0 Eigenvalues --- 0.00351 0.00415 0.12956 0.13744 0.17655 Eigenvalues --- 0.21132 0.22468 0.25781 0.27809 0.35680 Eigenvalues --- 0.36154 0.51175 0.51214 0.70681 0.70894 Angle between quadratic step and forces= 40.50 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00012531 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.02745 0.00001 0.00000 0.00003 0.00003 3.02747 R2 3.02745 0.00001 0.00000 0.00003 0.00003 3.02747 R3 2.69952 0.00003 0.00000 0.00005 0.00005 2.69957 R4 2.69952 0.00003 0.00000 0.00005 0.00005 2.69957 R5 1.83742 -0.00001 0.00000 -0.00002 -0.00002 1.83741 R6 1.83742 -0.00001 0.00000 -0.00002 -0.00002 1.83741 A1 1.77516 0.00004 0.00000 0.00013 0.00013 1.77529 A2 1.83664 0.00001 0.00000 0.00005 0.00005 1.83669 A3 1.89943 -0.00004 0.00000 -0.00016 -0.00016 1.89926 A4 1.89943 -0.00004 0.00000 -0.00016 -0.00016 1.89926 A5 1.83664 0.00001 0.00000 0.00005 0.00005 1.83669 A6 2.17723 0.00002 0.00000 0.00011 0.00011 2.17734 A7 1.88160 0.00000 0.00000 -0.00003 -0.00003 1.88157 A8 1.88160 0.00000 0.00000 -0.00003 -0.00003 1.88157 D1 1.42311 0.00001 0.00000 -0.00004 -0.00004 1.42307 D2 -2.87990 -0.00001 0.00000 -0.00015 -0.00015 -2.88005 D3 -0.50970 0.00000 0.00000 -0.00009 -0.00009 -0.50979 D4 1.42311 0.00001 0.00000 -0.00004 -0.00004 1.42307 D5 -0.50970 0.00000 0.00000 -0.00009 -0.00009 -0.50979 D6 -2.87990 -0.00001 0.00000 -0.00015 -0.00015 -2.88005 Item Value Threshold Converged? Maximum Force 0.000036 0.000450 YES RMS Force 0.000019 0.000300 YES Maximum Displacement 0.000288 0.001800 YES RMS Displacement 0.000125 0.001200 YES Predicted change in Energy=-1.310294D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.6021 -DE/DX = 0.0 ! ! R2 R(1,4) 1.6021 -DE/DX = 0.0 ! ! R3 R(1,6) 1.4285 -DE/DX = 0.0 ! ! R4 R(1,7) 1.4285 -DE/DX = 0.0 ! ! R5 R(2,3) 0.9723 -DE/DX = 0.0 ! ! R6 R(4,5) 0.9723 -DE/DX = 0.0 ! ! A1 A(2,1,4) 101.7092 -DE/DX = 0.0 ! ! A2 A(2,1,6) 105.2319 -DE/DX = 0.0 ! ! A3 A(2,1,7) 108.8291 -DE/DX = 0.0 ! ! A4 A(4,1,6) 108.8291 -DE/DX = 0.0 ! ! A5 A(4,1,7) 105.2319 -DE/DX = 0.0 ! ! A6 A(6,1,7) 124.7464 -DE/DX = 0.0 ! ! A7 A(1,2,3) 107.8078 -DE/DX = 0.0 ! ! A8 A(1,4,5) 107.8078 -DE/DX = 0.0 ! ! D1 D(4,1,2,3) 81.5382 -DE/DX = 0.0 ! ! D2 D(6,1,2,3) -165.0061 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) -29.2034 -DE/DX = 0.0 ! ! D4 D(2,1,4,5) 81.5382 -DE/DX = 0.0 ! ! D5 D(6,1,4,5) -29.2034 -DE/DX = 0.0 ! ! D6 D(7,1,4,5) -165.0061 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-COMPUTE-0-3\Freq\RMP2-FC\6-311+G(2d,p)\H2O4S1\ZDANOVSKAIA\18- May-2017\0\\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RMP2(FC)/6 -311+G(2d,p) Freq\\Sulfuric Acid\\0,1\S,0.0986333255,0.1708430602,-0.1 394919875\O,-0.0683847893,0.1376491673,1.453487849\H,0.6564744837,-0.3 986181909,1.8173669421\O,-0.5601105161,-1.2262532381,-0.5646509205\H,- 1.5244999529,-1.1048725606,-0.5897782433\O,-0.7468334058,1.2332791096, -0.5834471319\O,1.4849571873,0.0452177684,-0.4604356083\\Version=EM64L -G09RevD.01\State=1-A\HF=-698.2001569\MP2=-699.2351845\RMSD=9.649e-10\ RMSF=1.644e-05\ZeroPoint=0.0391261\Thermal=0.0442448\Dipole=-0.496891, -0.8606578,0.7027204\DipoleDeriv=2.4086292,0.0369493,0.065712,0.088638 5,2.3411159,0.0154241,0.1290183,-0.0211251,2.445052,-0.4989265,-0.0269 926,-0.0503019,-0.0499705,-0.4836728,0.1380215,-0.0299239,0.0459018,-1 .3906643,0.2897296,0.0349955,0.0896131,0.0443006,0.3085221,-0.054703,0 .0329778,-0.0192442,0.3589611,-0.7376458,-0.444184,-0.1751275,-0.37646 11,-1.0556076,-0.2012132,-0.140704,-0.1407325,-0.5800104,0.3395088,0.1 070055,0.0393754,0.0409459,0.2780958,-0.015037,0.0265005,-0.0103649,0. 3396082,-0.759598,0.2712293,-0.1267517,0.1507327,-0.8583147,0.1235166, -0.0825857,0.11378,-0.563435,-1.0416974,0.0209969,0.1574807,0.1018138, -0.5301388,-0.0060091,0.0647169,0.031785,-0.6095117\Polar=36.8263538,- 1.1547999,33.6515825,0.9141055,-0.6717918,33.3569671\PG=C01 [X(H2O4S1) ]\NImag=0\\1.16080607,-0.25846283,0.76713368,0.00252747,-0.11223451,0. 57387954,-0.09418654,0.01656340,0.00060086,0.36437743,0.01320717,-0.07 331909,0.01674839,-0.22186185,0.21215098,0.03497528,-0.00072088,-0.216 22993,0.10892549,-0.09910899,0.37079049,0.00522176,0.00026688,-0.00146 120,-0.28688939,0.20745862,-0.14409761,0.28351816,0.00485560,-0.000274 92,0.00289457,0.20183030,-0.15383611,0.10667484,-0.20571937,0.15582132 ,-0.03679245,0.02669520,-0.02744907,-0.10370945,0.07975084,-0.09516671 ,0.13519550,-0.10332756,0.12167300,-0.11899110,-0.05965870,-0.01918734 ,0.00928027,-0.00677321,-0.00830229,0.00031592,-0.00093852,0.00277666, 0.60826226,-0.02223828,-0.19232023,-0.02815888,-0.00839498,0.00267510, -0.01059716,0.00036650,-0.00416233,-0.00125469,0.00488480,0.26595645,- 0.01184157,-0.03477629,-0.07242425,-0.01682663,-0.02765560,-0.01839630 ,0.00267040,-0.00286112,0.00038725,0.04171822,0.06122343,0.07310020,-0 .02591711,-0.00310306,-0.00250147,0.00189122,0.00176124,0.00385533,-0. 00035980,0.00021494,-0.00020476,-0.48608718,0.04056812,-0.01949886,0.5 0457119,-0.04470016,0.00147363,-0.00510081,0.00152576,-0.00220426,-0.0 0043496,0.00006953,0.00014422,0.00016430,0.08811310,-0.04225537,-0.004 63657,-0.04535749,0.04815671,-0.01249630,-0.00273295,0.00194126,0.0018 6232,-0.00095209,-0.00314613,-0.00006411,0.00020226,0.00020611,-0.0085 4955,-0.00735169,-0.00754964,0.01897339,0.01006242,0.00828456,-0.29992 615,0.25120522,-0.10392771,0.00543676,0.00537645,-0.00281647,0.0035600 7,-0.00034206,0.00159636,0.01581760,-0.01444846,0.00053973,0.00198658, 0.00583614,-0.00038659,0.28204616,0.24832508,-0.40654441,0.13231287,0. 01136465,-0.00059093,0.00374522,-0.00255138,0.00323011,0.00107499,0.01 282499,-0.03453261,0.00738988,0.00795049,0.00053564,0.00117912,-0.2770 3145,0.42658017,-0.09963308,0.12943269,-0.13820117,-0.03007242,0.03230 746,-0.01901519,0.00475820,0.00078958,-0.00606242,-0.00009325,-0.00904 877,0.01509335,0.00035461,0.00094643,-0.00239938,0.11719012,-0.1506185 6,0.13246484,-0.62700693,0.05318910,0.12394939,0.00009025,0.00083158,0 .00746026,-0.00536671,0.00009911,0.00113813,-0.02859777,-0.00073771,0. 00323872,0.00391510,-0.00548688,0.00066084,-0.00892103,-0.00088238,0.0 0749582,0.66588710,0.05901341,-0.09614866,-0.00646163,-0.00102728,0.01 512430,0.00044192,0.00010922,-0.00092228,-0.00310307,-0.03845245,0.004 63900,0.00131627,-0.00203425,-0.00585058,-0.00040707,0.02940416,0.0113 2204,-0.00380884,-0.04701282,0.07183618,0.12326065,-0.00566326,-0.1215 1638,0.03921982,-0.00109000,-0.01883623,0.00299883,-0.00437257,0.00641 185,-0.00836245,-0.00481224,0.00978939,-0.00097825,-0.00100081,0.00266 324,-0.01219544,0.00491647,0.01811997,-0.14394317,0.01202242,0.1033681 5\\0.00000632,0.00001083,-0.00000886,-0.00002881,-0.00000223,-0.000015 72,0.00000838,-0.00000304,0.00000324,0.00002534,-0.00000380,0.00002064 ,-0.00000887,0.00000219,-0.00000255,0.00003396,-0.00000923,0.00001755, -0.00003632,0.00000528,-0.00001431\\\@ THERE IS AN OLD, OLD RECIPE IN MAINE FOR STEWING COOT. PLACE THE BIRD IN A KETTLE OF WATER WITH A RED BUILDING BRICK FREE OF MORTAR AND BLEMISHES. PARBOIL THE COOT AND BRICK TOGETHER FOR THREE HOURS. POUR OFF THE WATER, REFILL THE KETTLE, AND AGAIN PARBOIL FOR THREE HOURS. ONCE AGAIN POUR OFF THE WATER, FOR THE LAST TIME ADD FRESH WATER, AND LET THE COOT AND BRICK SIMMER TOGETHER OVERNIGHT. IN THE MORNING, THROW AWAY THE COOT AND EAT THE BRICK. Job cpu time: 0 days 0 hours 48 minutes 59.1 seconds. File lengths (MBytes): RWF= 3913 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 18 20:29:04 2017.