Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/124556/Gau-12614.inp" -scrdir="/scratch/webmo-13362/124556/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 12615. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 23-May-2017 ****************************************** ------------------------------------------------- #N M062X/6-311+G(2d,p) OPT FREQ Geom=Connectivity ------------------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,71=1,74=-55/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,71=1,74=-55/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -- Br -- Symbolic Z-matrix: Charge = 0 Multiplicity = 2 Br GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. No Z-matrix variables, so optimization will use Cartesian coordinates. Trust Radius=1.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: 6-311+G(2d,p) (5D, 7F) There are 21 symmetry adapted cartesian basis functions of AG symmetry. There are 4 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 8 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 17 symmetry adapted basis functions of AG symmetry. There are 4 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 8 symmetry adapted basis functions of B1U symmetry. There are 8 symmetry adapted basis functions of B2U symmetry. There are 8 symmetry adapted basis functions of B3U symmetry. 53 basis functions, 100 primitive gaussians, 57 cartesian basis functions 18 alpha electrons 17 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 3.11D-02 NBF= 17 4 4 4 0 8 8 8 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 17 4 4 4 0 8 8 8 ExpMin= 3.50D-02 ExpMax= 4.40D+05 ExpMxC= 1.51D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) Virtual (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) Virtual (T1U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7500 S= 0.5000 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=1940865. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. SCF Done: E(UM062X) = -2574.12411284 A.U. after 10 cycles NFock= 10 Conv=0.18D-08 -V/T= 2.0011 = 0.0000 = 0.0000 = 0.5000 = 0.7532 S= 0.5016 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7532, after 0.7500 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) (?B) Virtual (A1G) (?B) (?B) (?B) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (?A) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) Virtual (?B) (?A) (?B) (?B) (?B) (?A) (T2G) (T2G) (T2G) (?A) (?B) (?B) (?B) (?A) (?A) (?A) (T2G) (T2G) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -485.36372 -63.35528 -57.18638 -57.17851 -57.17851 Alpha occ. eigenvalues -- -9.04900 -6.88573 -6.86282 -6.86282 -2.91257 Alpha occ. eigenvalues -- -2.90694 -2.90694 -2.89004 -2.89004 -0.88424 Alpha occ. eigenvalues -- -0.43064 -0.38478 -0.38478 Alpha virt. eigenvalues -- 0.03097 0.05209 0.05685 0.05685 0.30958 Alpha virt. eigenvalues -- 0.31931 0.31931 0.34343 0.34343 0.42287 Alpha virt. eigenvalues -- 0.43614 0.43614 0.53489 1.77307 1.78502 Alpha virt. eigenvalues -- 1.78502 1.82439 1.82439 1.93213 1.97780 Alpha virt. eigenvalues -- 1.97780 6.23674 6.25176 6.25176 6.29027 Alpha virt. eigenvalues -- 6.29027 6.53541 7.55068 7.59433 7.59433 Alpha virt. eigenvalues -- 48.10635 290.72882 290.73567 290.735671020.60661 Beta occ. eigenvalues -- -485.35972 -63.35308 -57.17794 -57.17731 -57.17731 Beta occ. eigenvalues -- -9.04461 -6.87036 -6.86152 -6.86152 -2.90577 Beta occ. eigenvalues -- -2.90056 -2.90056 -2.88936 -2.88936 -0.81704 Beta occ. eigenvalues -- -0.36685 -0.36685 Beta virt. eigenvalues -- -0.17493 0.01916 0.05309 0.05390 0.05390 Beta virt. eigenvalues -- 0.33446 0.34341 0.34341 0.34786 0.34786 Beta virt. eigenvalues -- 0.40303 0.43110 0.43110 0.55325 1.83449 Beta virt. eigenvalues -- 1.83742 1.83742 1.84817 1.84817 2.00430 Beta virt. eigenvalues -- 2.00430 2.01292 6.23924 6.26183 6.26183 Beta virt. eigenvalues -- 6.28920 6.28920 6.53382 7.57739 7.59637 Beta virt. eigenvalues -- 7.59637 48.10662 290.73743 290.73743 290.74480 Beta virt. eigenvalues -- 1020.61091 Condensed to atoms (all electrons): 1 1 Br 35.000000 Atomic-Atomic Spin Densities. 1 1 Br 1.000000 Mulliken charges and spin densities: 1 2 1 Br 0.000000 1.000000 Sum of Mulliken charges = 0.00000 1.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 Br 0.000000 1.000000 Electronic spatial extent (au): = 40.6013 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -19.1937 YY= -16.2227 ZZ= -19.1937 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.9903 YY= 1.9807 ZZ= -0.9903 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -24.5059 YYYY= -17.0911 ZZZZ= -24.5059 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.9322 XXZZ= -8.1686 YYZZ= -6.9322 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-6.153409011215D+03 KE= 2.571312524145D+03 Symmetry AG KE= 1.571971438339D+03 Symmetry B1G KE= 4.332618901123D+01 Symmetry B2G KE= 4.337650898424D+01 Symmetry B3G KE= 4.332618901123D+01 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 2.906444016392D+02 Symmetry B2U KE= 2.880233955209D+02 Symmetry B3U KE= 2.906444016392D+02 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Br(79) 0.00556 6.24562 2.22859 2.08331 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom -5.280824 10.561648 -5.280824 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa -5.2808 -708.356 -252.759 -236.282 1.0000 0.0000 0.0000 1 Br(79) Bbb -5.2808 -708.356 -252.759 -236.282 0.0000 0.0000 1.0000 Bcc 10.5616 1416.711 505.518 472.564 0.0000 1.0000 0.0000 --------------------------------------------------------------------------------- Density matrix has only Abelian symmetry. Density matrix has only Abelian symmetry. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 35 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. The second derivative matrix: X1 Y1 Z1 X1 0.00000 Y1 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 ITU= 0 Eigenvalues --- RFO step: Lambda=-5.96046448D-09 EMin= 0.00000000D+00 Linear search not attempted -- first point. TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy= 0.000000D+00 Optimization completed. -- Stationary point found. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- 1\1\GINC-COMPUTE-0-13\FOpt\UM062X\6-311+G(2d,p)\Br1(2)\ZDANOVSKAIA\23- May-2017\0\\#N M062X/6-311+G(2d,p) OPT FREQ Geom=Connectivity\\Br\\0,2 \Br,0.,0.,0.\\Version=EM64L-G09RevD.01\HF=-2574.1241128\S2=0.753235\S2 -1=0.\S2A=0.750005\RMSD=1.774e-09\RMSF=0.000e+00\Dipole=0.,0.,0.\Quadr upole=-0.7362961,1.4725922,-0.7362961,0.,0.,0.\PG=OH [O(Br1)]\\@ LIVE PURE, SPEAK TRUE, RIGHT WRONG, FOLLOW THE KING... ELSE, WHEREFORE BORN...... IDYLLS OF THE KING, TENNYSON Job cpu time: 0 days 0 hours 0 minutes 2.7 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue May 23 09:11:38 2017. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk UM062X/6-311+G(2d,p) F req ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=4,6=6,7=112,11=2,14=-4,16=1,25=1,30=1,70=2,71=2,74=-55,116=2,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "/scratch/webmo-13362/124556/Gau-12615.chk" -- Br -- Charge = 0 Multiplicity = 2 No Z-Matrix found in file; cartesian coordinates used. Br 0.000000000000 0.000000000000 0.000000000000 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: 6-311+G(2d,p) (5D, 7F) There are 21 symmetry adapted cartesian basis functions of AG symmetry. There are 4 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 8 symmetry adapted cartesian basis functions of B1U symmetry. There are 8 symmetry adapted cartesian basis functions of B2U symmetry. There are 8 symmetry adapted cartesian basis functions of B3U symmetry. There are 17 symmetry adapted basis functions of AG symmetry. There are 4 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 8 symmetry adapted basis functions of B1U symmetry. There are 8 symmetry adapted basis functions of B2U symmetry. There are 8 symmetry adapted basis functions of B3U symmetry. 53 basis functions, 100 primitive gaussians, 57 cartesian basis functions 18 alpha electrons 17 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 3.11D-02 NBF= 17 4 4 4 0 8 8 8 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 17 4 4 4 0 8 8 8 Initial guess from the checkpoint file: "/scratch/webmo-13362/124556/Gau-12615.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) (?B) Virtual (A1G) (?B) (?B) (?B) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (?A) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) Virtual (?B) (?A) (?B) (?B) (?B) (?A) (T2G) (T2G) (T2G) (?A) (?B) (?B) (?B) (?A) (?A) (?A) (T2G) (T2G) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7532 S= 0.5016 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=1940865. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. SCF Done: E(UM062X) = -2574.12411284 A.U. after 1 cycles NFock= 1 Conv=0.96D-10 -V/T= 2.0011 = 0.0000 = 0.0000 = 0.5000 = 0.7532 S= 0.5016 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7532, after 0.7500 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 53 NBasis= 53 NAE= 18 NBE= 17 NFC= 0 NFV= 0 NROrb= 53 NOA= 18 NOB= 17 NVA= 35 NVB= 36 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 2 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=1911397. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=6 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.07D-14 1.67D-08 XBig12= 1.60D+01 1.64D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.07D-14 1.67D-08 XBig12= 1.49D+00 8.21D-01. 3 vectors produced by pass 2 Test12= 2.07D-14 1.67D-08 XBig12= 1.78D-02 5.44D-02. 3 vectors produced by pass 3 Test12= 2.07D-14 1.67D-08 XBig12= 2.87D-04 9.23D-03. 3 vectors produced by pass 4 Test12= 2.07D-14 1.67D-08 XBig12= 8.89D-06 1.44D-03. 3 vectors produced by pass 5 Test12= 2.07D-14 1.67D-08 XBig12= 2.75D-08 6.51D-05. 3 vectors produced by pass 6 Test12= 2.07D-14 1.67D-08 XBig12= 2.22D-10 5.26D-06. 3 vectors produced by pass 7 Test12= 2.07D-14 1.67D-08 XBig12= 1.11D-12 2.85D-07. 1 vectors produced by pass 8 Test12= 2.07D-14 1.67D-08 XBig12= 7.13D-15 3.38D-08. InvSVY: IOpt=1 It= 1 EMax= 1.11D-16 Solved reduced A of dimension 25 with 3 vectors. Isotropic polarizability for W= 0.000000 16.81 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) (?B) Virtual (A1G) (?B) (?B) (?B) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (?A) (?A) (T2G) (T2G) (?A) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (T2G) (T2G) (EG) (T2G) (?A) (?B) (?B) Virtual (?B) (?A) (?B) (?B) (?B) (?A) (T2G) (T2G) (T2G) (?A) (?B) (?B) (?B) (?A) (?A) (?A) (T2G) (T2G) (T2G) (?B) (?B) (?B) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -485.36372 -63.35528 -57.18638 -57.17851 -57.17851 Alpha occ. eigenvalues -- -9.04900 -6.88573 -6.86282 -6.86282 -2.91257 Alpha occ. eigenvalues -- -2.90694 -2.90694 -2.89004 -2.89004 -0.88424 Alpha occ. eigenvalues -- -0.43064 -0.38478 -0.38478 Alpha virt. eigenvalues -- 0.03097 0.05209 0.05685 0.05685 0.30958 Alpha virt. eigenvalues -- 0.31931 0.31931 0.34343 0.34343 0.42287 Alpha virt. eigenvalues -- 0.43614 0.43614 0.53489 1.77307 1.78502 Alpha virt. eigenvalues -- 1.78502 1.82439 1.82439 1.93213 1.97780 Alpha virt. eigenvalues -- 1.97780 6.23674 6.25176 6.25176 6.29027 Alpha virt. eigenvalues -- 6.29027 6.53541 7.55068 7.59433 7.59433 Alpha virt. eigenvalues -- 48.10635 290.72882 290.73567 290.735671020.60661 Beta occ. eigenvalues -- -485.35972 -63.35308 -57.17794 -57.17731 -57.17731 Beta occ. eigenvalues -- -9.04461 -6.87036 -6.86152 -6.86152 -2.90577 Beta occ. eigenvalues -- -2.90056 -2.90056 -2.88936 -2.88936 -0.81704 Beta occ. eigenvalues -- -0.36685 -0.36685 Beta virt. eigenvalues -- -0.17493 0.01916 0.05309 0.05390 0.05390 Beta virt. eigenvalues -- 0.33446 0.34341 0.34341 0.34786 0.34786 Beta virt. eigenvalues -- 0.40303 0.43110 0.43110 0.55325 1.83449 Beta virt. eigenvalues -- 1.83742 1.83742 1.84817 1.84817 2.00430 Beta virt. eigenvalues -- 2.00430 2.01292 6.23924 6.26183 6.26183 Beta virt. eigenvalues -- 6.28920 6.28920 6.53382 7.57739 7.59637 Beta virt. eigenvalues -- 7.59637 48.10662 290.73743 290.73743 290.74480 Beta virt. eigenvalues -- 1020.61091 Condensed to atoms (all electrons): 1 1 Br 35.000000 Atomic-Atomic Spin Densities. 1 1 Br 1.000000 Mulliken charges and spin densities: 1 2 1 Br 0.000000 1.000000 Sum of Mulliken charges = 0.00000 1.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 Br 0.000000 1.000000 APT charges: 1 1 Br 0.000000 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 Br 0.000000 Electronic spatial extent (au): = 40.6013 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -19.1937 YY= -16.2227 ZZ= -19.1937 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.9903 YY= 1.9807 ZZ= -0.9903 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -24.5059 YYYY= -17.0911 ZZZZ= -24.5059 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.9322 XXZZ= -8.1686 YYZZ= -6.9322 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-6.153409011458D+03 KE= 2.571312524280D+03 Symmetry AG KE= 1.571971438383D+03 Symmetry B1G KE= 4.332618902463D+01 Symmetry B2G KE= 4.337650899729D+01 Symmetry B3G KE= 4.332618902463D+01 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 2.906444016617D+02 Symmetry B2U KE= 2.880233955275D+02 Symmetry B3U KE= 2.906444016617D+02 Exact polarizability: 17.715 0.000 14.988 0.000 0.000 17.715 Approx polarizability: 20.328 0.000 19.672 0.000 0.000 20.328 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Br(79) 0.00556 6.24564 2.22860 2.08332 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom -5.280824 10.561648 -5.280824 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa -5.2808 -708.356 -252.759 -236.282 0.0000 0.0000 1.0000 1 Br(79) Bbb -5.2808 -708.356 -252.759 -236.282 1.0000 0.0000 0.0000 Bcc 10.5616 1416.711 505.518 472.564 0.0000 1.0000 0.0000 --------------------------------------------------------------------------------- Density matrix has only Abelian symmetry. Density matrix has only Abelian symmetry. Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- 0.0000 0.0000 0.0000 Diagonal vibrational polarizability: 0.0000000 0.0000000 0.0000000 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 35 and mass 78.91834 Molecular mass: 78.91834 amu. Zero-point vibrational energy 0.0 (Joules/Mol) 0.00000 (Kcal/Mol) Vibrational temperatures: (Kelvin) Zero-point correction= 0.000000 (Hartree/Particle) Thermal correction to Energy= 0.001416 Thermal correction to Enthalpy= 0.002360 Thermal correction to Gibbs Free Energy= -0.016830 Sum of electronic and zero-point Energies= -2574.124113 Sum of electronic and thermal Energies= -2574.122697 Sum of electronic and thermal Enthalpies= -2574.121752 Sum of electronic and thermal Free Energies= -2574.140943 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 0.889 2.981 40.390 Electronic 0.000 0.000 1.377 Translational 0.889 2.981 39.012 Rotational 0.000 0.000 0.000 Vibrational 0.000 0.000 0.000 Q Log10(Q) Ln(Q) Total Bot 0.551128D+08 7.741252 17.824892 Total V=0 0.551128D+08 7.741252 17.824892 Vib (Bot) 0.100000D+01 0.000000 0.000000 Vib (V=0) 0.100000D+01 0.000000 0.000000 Electronic 0.200000D+01 0.301030 0.693147 Translational 0.275564D+08 7.440222 17.131744 Rotational 0.100000D+01 0.000000 0.000000 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 35 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: X1 Y1 Z1 X1 0.00000 Y1 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 ITU= 0 Eigenvalues --- Angle between quadratic step and forces= 90.00 degrees. Linear search not attempted -- first point. TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy= 0.000000D+00 Optimization completed. -- Stationary point found. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-COMPUTE-0-13\Freq\UM062X\6-311+G(2d,p)\Br1(2)\ZDANOVSKAIA\23- May-2017\0\\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk UM062X/6-3 11+G(2d,p) Freq\\Br\\0,2\Br,0.,0.,0.\\Version=EM64L-G09RevD.01\HF=-257 4.1241128\S2=0.753235\S2-1=0.\S2A=0.750005\RMSD=9.645e-11\RMSF=0.000e+ 00\Thermal=0.0014163\Dipole=0.,0.,0.\DipoleDeriv=0.,0.,0.,0.,0.,0.,0., 0.,0.\Polar=17.7148811,0.,14.9881068,0.,0.,17.7148811\PG=OH [O(Br1)]\N Imag=0\\0.,0.,0.,0.,0.,0.\\0.,0.,0.\\\@ CHRISTMAS IS ON TOP OF A STEEP HILL. THE CLOSER YOU GET, THE STEEPER THE HILL IS. -- LINUS, OF PEANUTS Job cpu time: 0 days 0 hours 0 minutes 5.7 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue May 23 09:11:43 2017.