Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/124628/Gau-20945.inp" -scrdir="/scratch/webmo-13362/124628/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 20946. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-May-2017 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. -------------------------------------------- #N M062X/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------------- 8. 2-bromopropane ----------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 H 3 B3 2 A2 1 D1 0 H 3 B4 2 A3 1 D2 0 H 3 B5 2 A4 1 D3 0 Br 2 B6 1 A5 3 D4 0 H 2 B7 1 A6 3 D5 0 H 1 B8 2 A7 3 D6 0 H 1 B9 2 A8 3 D7 0 H 1 B10 2 A9 3 D8 0 Variables: B1 1.51404 B2 1.51404 B3 1.08875 B4 1.09346 B5 1.09081 B6 1.97897 B7 1.08771 B8 1.08875 B9 1.09081 B10 1.09346 A1 113.21582 A2 111.55174 A3 109.00855 A4 110.43342 A5 108.97111 A6 110.98466 A7 111.55174 A8 110.43342 A9 109.00855 D1 179.63109 D2 -60.35934 D3 58.66987 D4 121.43303 D5 -125.58213 D6 -179.63109 D7 -58.66987 D8 60.35934 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.514041 3 6 0 1.391444 0.000000 2.110869 4 1 0 1.359836 0.006520 3.199138 5 1 0 1.920306 -0.898553 1.781371 6 1 0 1.950942 0.873124 1.772528 7 35 0 -0.975979 1.596840 2.157388 8 1 0 -0.590929 -0.825945 1.903570 9 1 0 -1.012607 0.006520 -0.399942 10 1 0 0.531497 0.873124 -0.380821 11 1 0 0.511293 -0.898553 -0.356151 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.514041 0.000000 3 C 2.528218 1.514041 0.000000 4 H 3.476159 2.165351 1.088747 0.000000 5 H 2.769161 2.136922 1.093463 1.772949 0.000000 6 H 2.776756 2.152983 1.090807 1.770770 1.771964 7 Br 2.856003 1.978971 2.856003 3.011709 3.841463 8 H 2.157536 1.087711 2.157536 2.485352 2.515254 9 H 1.088747 2.165351 3.476159 4.310668 3.765536 10 H 1.090807 2.152983 2.776756 3.775348 3.121330 11 H 1.093463 2.136922 2.769161 3.765536 2.560140 6 7 8 9 10 6 H 0.000000 7 Br 3.039531 0.000000 8 H 3.060248 2.466288 0.000000 9 H 3.775348 3.011709 2.485352 0.000000 10 H 2.579096 3.039531 3.060248 1.770770 0.000000 11 H 3.121330 3.841463 2.515254 1.772949 1.771964 11 11 H 0.000000 Stoichiometry C3H7Br Framework group CS[SG(CHBr),X(C2H6)] Deg. of freedom 15 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.917094 -1.255276 1.264109 2 6 0 0.917094 -0.422000 0.000000 3 6 0 0.917094 -1.255276 -1.264109 4 1 0 0.910574 -0.629940 -2.155334 5 1 0 1.815647 -1.878180 -1.280070 6 1 0 0.043970 -1.908626 -1.289548 7 35 0 -0.679746 0.746944 0.000000 8 1 0 1.743039 0.285764 0.000000 9 1 0 0.910574 -0.629940 2.155334 10 1 0 0.043970 -1.908626 1.289548 11 1 0 1.815647 -1.878180 1.280070 --------------------------------------------------------------------- Rotational constants (GHZ): 8.1050004 2.9025248 2.2919439 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 114 symmetry adapted cartesian basis functions of A' symmetry. There are 72 symmetry adapted cartesian basis functions of A" symmetry. There are 106 symmetry adapted basis functions of A' symmetry. There are 70 symmetry adapted basis functions of A" symmetry. 176 basis functions, 282 primitive gaussians, 186 cartesian basis functions 30 alpha electrons 30 beta electrons nuclear repulsion energy 251.3166168231 Hartrees. NAtoms= 11 NActive= 11 NUniq= 7 SFac= 2.47D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 176 RedAO= T EigKep= 1.07D-04 NBF= 106 70 NBsUse= 176 1.00D-06 EigRej= -1.00D+00 NBFU= 106 70 ExpMin= 3.50D-02 ExpMax= 4.40D+05 ExpMxC= 1.51D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A') (A") (A') Virtual (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A") (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=182269110. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RM062X) = -2692.67946329 A.U. after 11 cycles NFock= 11 Conv=0.79D-08 -V/T= 2.0012 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 176 NBasis= 176 NAE= 30 NBE= 30 NFC= 0 NFV= 0 NROrb= 176 NOA= 30 NOB= 30 NVA= 146 NVB= 146 **** Warning!!: The largest alpha MO coefficient is 0.36339052D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=182146887. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 1.46D-13 3.33D-08 XBig12= 2.00D+00 3.64D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.46D-13 3.33D-08 XBig12= 1.73D-02 4.12D-02. 3 vectors produced by pass 2 Test12= 1.46D-13 3.33D-08 XBig12= 2.74D-04 7.57D-03. 3 vectors produced by pass 3 Test12= 1.46D-13 3.33D-08 XBig12= 4.81D-06 8.02D-04. 3 vectors produced by pass 4 Test12= 1.46D-13 3.33D-08 XBig12= 5.40D-08 5.89D-05. 3 vectors produced by pass 5 Test12= 1.46D-13 3.33D-08 XBig12= 6.87D-10 8.31D-06. 3 vectors produced by pass 6 Test12= 1.46D-13 3.33D-08 XBig12= 4.06D-12 4.65D-07. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 21 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 156.5083 Anisotropy = 44.5666 XX= 145.5267 YX= -10.7670 ZX= 1.4793 XY= -13.8027 YY= 154.2473 ZY= -21.5123 XZ= 6.1999 YZ= -18.8409 ZZ= 169.7509 Eigenvalues: 133.8277 149.4779 186.2194 2 C Isotropic = 127.0419 Anisotropy = 64.0382 XX= 144.5953 YX= -36.2873 ZX= 0.0000 XY= -38.8278 YY= 113.6225 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 122.9078 Eigenvalues: 88.4838 122.9078 169.7340 3 C Isotropic = 156.5083 Anisotropy = 44.5666 XX= 145.5267 YX= -10.7670 ZX= -1.4793 XY= -13.8027 YY= 154.2473 ZY= 21.5123 XZ= -6.1999 YZ= 18.8409 ZZ= 169.7509 Eigenvalues: 133.8277 149.4779 186.2194 4 H Isotropic = 30.2251 Anisotropy = 9.1605 XX= 26.4916 YX= -1.2968 ZX= -1.8317 XY= -1.0011 YY= 28.2001 ZY= 0.2985 XZ= -1.7486 YZ= -1.5722 ZZ= 35.9836 Eigenvalues: 25.5721 28.7711 36.3321 5 H Isotropic = 30.7606 Anisotropy = 11.1215 XX= 32.0761 YX= -4.7552 ZX= -2.2039 XY= -5.3903 YY= 30.8823 ZY= 2.1926 XZ= -3.0238 YZ= 3.2082 ZZ= 29.3233 Eigenvalues: 26.3230 27.7837 38.1749 6 H Isotropic = 30.5370 Anisotropy = 6.8446 XX= 29.9312 YX= 1.5573 ZX= 0.4007 XY= 2.2795 YY= 32.1464 ZY= 2.6580 XZ= 1.5166 YZ= 3.5817 ZZ= 29.5336 Eigenvalues: 27.4197 29.0913 35.1001 7 Br Isotropic = 2096.3470 Anisotropy = 1286.7136 XX= 2448.1469 YX= -697.1812 ZX= 0.0000 XY= -631.6192 YY= 2081.7852 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 1759.1088 Eigenvalues: 1575.7761 1759.1088 2954.1560 8 H Isotropic = 27.9187 Anisotropy = 9.1487 XX= 33.8630 YX= 1.5409 ZX= 0.0000 XY= 0.5958 YY= 26.6489 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 23.2443 Eigenvalues: 23.2443 26.4940 34.0179 9 H Isotropic = 30.2251 Anisotropy = 9.1605 XX= 26.4916 YX= -1.2968 ZX= 1.8317 XY= -1.0011 YY= 28.2001 ZY= -0.2985 XZ= 1.7486 YZ= 1.5722 ZZ= 35.9836 Eigenvalues: 25.5721 28.7711 36.3321 10 H Isotropic = 30.5370 Anisotropy = 6.8446 XX= 29.9312 YX= 1.5573 ZX= -0.4007 XY= 2.2795 YY= 32.1464 ZY= -2.6580 XZ= -1.5166 YZ= -3.5817 ZZ= 29.5336 Eigenvalues: 27.4197 29.0913 35.1001 11 H Isotropic = 30.7606 Anisotropy = 11.1215 XX= 32.0761 YX= -4.7552 ZX= 2.2039 XY= -5.3903 YY= 30.8823 ZY= -2.1926 XZ= 3.0238 YZ= -3.2082 ZZ= 29.3233 Eigenvalues: 26.3230 27.7837 38.1749 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") Virtual (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -485.30410 -63.29743 -57.12418 -57.12177 -57.12175 Alpha occ. eigenvalues -- -10.60524 -10.54175 -10.54174 -8.99229 -6.81947 Alpha occ. eigenvalues -- -6.81018 -6.81013 -2.85059 -2.84737 -2.84732 Alpha occ. eigenvalues -- -2.83909 -2.83908 -0.93592 -0.82521 -0.79791 Alpha occ. eigenvalues -- -0.66972 -0.54957 -0.52366 -0.49651 -0.46840 Alpha occ. eigenvalues -- -0.43162 -0.42892 -0.39574 -0.33207 -0.33162 Alpha virt. eigenvalues -- 0.00943 0.02052 0.03340 0.03661 0.04034 Alpha virt. eigenvalues -- 0.06406 0.06667 0.07343 0.07369 0.09097 Alpha virt. eigenvalues -- 0.10281 0.10489 0.11969 0.12333 0.12919 Alpha virt. eigenvalues -- 0.13093 0.17181 0.18402 0.21104 0.22326 Alpha virt. eigenvalues -- 0.24583 0.24858 0.25835 0.26153 0.29660 Alpha virt. eigenvalues -- 0.30951 0.36794 0.37253 0.38592 0.41320 Alpha virt. eigenvalues -- 0.41759 0.42312 0.44541 0.45146 0.46792 Alpha virt. eigenvalues -- 0.49050 0.49999 0.52382 0.54162 0.58199 Alpha virt. eigenvalues -- 0.60176 0.61815 0.62384 0.63857 0.64568 Alpha virt. eigenvalues -- 0.66429 0.67199 0.68993 0.75775 0.76698 Alpha virt. eigenvalues -- 0.80588 0.80978 0.84232 0.90808 0.92184 Alpha virt. eigenvalues -- 0.96495 0.96579 1.04810 1.07916 1.10275 Alpha virt. eigenvalues -- 1.15588 1.15962 1.21929 1.22213 1.26138 Alpha virt. eigenvalues -- 1.31941 1.32908 1.35561 1.38879 1.49825 Alpha virt. eigenvalues -- 1.50974 1.74003 1.74728 1.76339 1.85377 Alpha virt. eigenvalues -- 1.87132 1.87287 1.91017 1.93444 1.95184 Alpha virt. eigenvalues -- 1.97349 2.00306 2.05155 2.09434 2.13100 Alpha virt. eigenvalues -- 2.15310 2.19817 2.24048 2.26146 2.29847 Alpha virt. eigenvalues -- 2.30612 2.31672 2.34746 2.39496 2.40540 Alpha virt. eigenvalues -- 2.42752 2.43466 2.49125 2.66266 2.67988 Alpha virt. eigenvalues -- 2.70611 2.72278 2.79796 2.84039 2.88608 Alpha virt. eigenvalues -- 3.06112 3.08215 3.20871 3.24508 3.27800 Alpha virt. eigenvalues -- 3.33094 3.37047 3.40312 3.41407 3.46142 Alpha virt. eigenvalues -- 3.46609 3.53776 3.55085 3.56521 3.58152 Alpha virt. eigenvalues -- 3.60295 3.62020 3.91710 4.20583 4.23030 Alpha virt. eigenvalues -- 4.25871 4.26199 4.39568 4.52092 6.37584 Alpha virt. eigenvalues -- 6.38273 6.45771 6.48792 6.52023 7.02625 Alpha virt. eigenvalues -- 7.67337 7.69005 7.83624 23.86892 24.04586 Alpha virt. eigenvalues -- 24.08139 48.48870 290.83033 290.84663 291.03438 Alpha virt. eigenvalues -- 1021.07531 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.243370 0.235601 -0.071603 0.023893 -0.021765 -0.014760 2 C 0.235601 5.067707 0.235601 -0.041363 -0.013105 -0.022397 3 C -0.071603 0.235601 5.243370 0.406916 0.395200 0.419739 4 H 0.023893 -0.041363 0.406916 0.499678 -0.022137 -0.024077 5 H -0.021765 -0.013105 0.395200 -0.022137 0.527646 -0.031646 6 H -0.014760 -0.022397 0.419739 -0.024077 -0.031646 0.503663 7 Br -0.088599 0.290691 -0.088599 -0.006471 0.011262 -0.007625 8 H -0.056784 0.468710 -0.056784 -0.006570 -0.005903 0.006308 9 H 0.406916 -0.041363 0.023893 -0.000231 -0.000036 -0.000202 10 H 0.419739 -0.022397 -0.014760 -0.000202 -0.000448 0.003447 11 H 0.395200 -0.013105 -0.021765 -0.000036 0.002258 -0.000448 7 8 9 10 11 1 C -0.088599 -0.056784 0.406916 0.419739 0.395200 2 C 0.290691 0.468710 -0.041363 -0.022397 -0.013105 3 C -0.088599 -0.056784 0.023893 -0.014760 -0.021765 4 H -0.006471 -0.006570 -0.000231 -0.000202 -0.000036 5 H 0.011262 -0.005903 -0.000036 -0.000448 0.002258 6 H -0.007625 0.006308 -0.000202 0.003447 -0.000448 7 Br 35.029632 -0.053660 -0.006471 -0.007625 0.011262 8 H -0.053660 0.534600 -0.006570 0.006308 -0.005903 9 H -0.006471 -0.006570 0.499678 -0.024077 -0.022137 10 H -0.007625 0.006308 -0.024077 0.503663 -0.031646 11 H 0.011262 -0.005903 -0.022137 -0.031646 0.527646 Mulliken charges: 1 1 C -0.471208 2 C -0.144581 3 C -0.471208 4 H 0.170599 5 H 0.158674 6 H 0.167999 7 Br -0.083795 8 H 0.176249 9 H 0.170599 10 H 0.167999 11 H 0.158674 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.026063 2 C 0.031668 3 C 0.026063 7 Br -0.083795 Electronic spatial extent (au): = 558.6977 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.8751 Y= -1.5437 Z= 0.0000 Tot= 2.4287 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.7201 YY= -38.9690 ZZ= -38.8592 XY= -0.6639 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.7960 YY= -0.4529 ZZ= -0.3431 XY= -0.6639 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -18.0204 YYY= 20.6726 ZZZ= 0.0000 XYY= -7.0200 XXY= 7.7820 XXZ= 0.0000 XZZ= -5.2169 YZZ= 6.9838 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -217.5636 YYYY= -282.7913 ZZZZ= -214.3512 XXXY= 80.3070 XXXZ= 0.0000 YYYX= 84.8520 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -76.3794 XXZZ= -75.0487 YYZZ= -85.3360 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 30.1472 N-N= 2.513166168231D+02 E-N=-6.931138595323D+03 KE= 2.689343399176D+03 Symmetry A' KE= 2.270693389397D+03 Symmetry A" KE= 4.186500097793D+02 1\1\GINC-COMPUTE-0-15\SP\RM062X\6-311+G(2d,p)\C3H7Br1\ZDANOVSKAIA\26-M ay-2017\0\\#N M062X/6-311+G(2d,p) NMR Geom=Connectivity\\8. 2-bromopro pane\\0,1\C\C,1,1.514041101\C,2,1.514041101,1,113.2158161\H,3,1.088746 814,2,111.5517392,1,179.6310877,0\H,3,1.093463141,2,109.0085522,1,-60. 35933601,0\H,3,1.090806529,2,110.4334189,1,58.66987284,0\Br,2,1.978971 465,1,108.9711081,3,121.433028,0\H,2,1.08771091,1,110.984663,3,-125.58 2132,0\H,1,1.088746814,2,111.5517392,3,-179.6310877,0\H,1,1.090806529, 2,110.4334189,3,-58.66987284,0\H,1,1.093463141,2,109.0085522,3,60.3593 3601,0\\Version=EM64L-G09RevD.01\State=1-A'\HF=-2692.6794633\RMSD=7.90 6e-09\Dipole=0.5070687,-0.7377058,-0.3342498\Quadrupole=-0.3120058,0.5 918372,-0.2798314,-0.4121251,0.0375056,0.2716648\PG=CS [SG(C1H1Br1),X( C2H6)]\\@ I KNOW YOU BELIEVE YOU UNDERSTAND WHAT YOU THINK I SAID, BUT I AM NOT SURE YOU REALIZE THAT WHAT YOU HEARD IS NOT WHAT I MEANT. Job cpu time: 0 days 0 hours 3 minutes 5.7 seconds. File lengths (MBytes): RWF= 15 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Fri May 26 10:26:32 2017.