Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/200419/Gau-20876.inp" -scrdir="/scratch/webmo-13362/200419/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 20877. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 11-Jan-2018 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. -------------------------------------------- #N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------- Polystyrene ----------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 C 5 B7 6 A6 1 D5 0 C 8 B8 5 A7 6 D6 0 H 9 B9 8 A8 5 D7 0 H 9 B10 8 A9 5 D8 0 H 8 B11 5 A10 6 D9 0 H 4 B12 5 A11 6 D10 0 H 3 B13 4 A12 5 D11 0 H 2 B14 1 A13 6 D12 0 H 1 B15 2 A14 3 D13 0 Variables: B1 1.38974 B2 1.39403 B3 1.38655 B4 1.40265 B5 1.39006 B6 1.08462 B7 1.46995 B8 1.3334 B9 1.08245 B10 1.08343 B11 1.08729 B12 1.08311 B13 1.08378 B14 1.08341 B15 1.08368 A1 119.45658 A2 120.42223 A3 120.88764 A4 120.03078 A5 119.68792 A6 118.83988 A7 127.68257 A8 120.71431 A9 122.82107 A10 114.43368 A11 119.898 A12 119.65533 A13 120.32466 A14 120.14126 D1 0. D2 0. D3 0. D4 180. D5 180. D6 180. D7 180. D8 0. D9 0. D10 180. D11 180. D12 180. D13 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.389737 3 6 0 1.213824 0.000000 2.075272 4 6 0 2.413143 0.000000 1.379458 5 6 0 2.431906 0.000000 -0.023070 6 6 0 1.203450 0.000000 -0.695674 7 1 0 1.196959 0.000000 -1.780279 8 6 0 3.672219 0.000000 -0.811975 9 6 0 4.926329 0.000000 -0.359011 10 1 0 5.762456 0.000000 -1.046468 11 1 0 5.169351 0.000000 0.696813 12 1 0 3.520431 0.000000 -1.888615 13 1 0 3.344802 0.000000 1.931856 14 1 0 1.222636 0.000000 3.159018 15 1 0 -0.935174 0.000000 1.936748 16 1 0 -0.937159 0.000000 -0.544154 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.389737 0.000000 3 C 2.404188 1.394033 0.000000 4 C 2.779598 2.413165 1.386550 0.000000 5 C 2.432015 2.812506 2.426265 1.402654 0.000000 6 C 1.390055 2.407744 2.770965 2.401985 1.400536 7 H 2.145251 3.388467 3.855587 3.385711 2.147761 8 C 3.760917 4.281674 3.792084 2.527381 1.469949 9 C 4.939394 5.227508 4.439417 3.055876 2.516943 10 H 5.856705 6.256277 5.516821 4.135580 3.484237 11 H 5.216104 5.215586 4.188836 2.839487 2.830519 12 H 3.995035 4.810512 4.586157 3.450564 2.159895 13 H 3.862612 3.388450 2.135799 1.083112 2.157571 14 H 3.387364 2.150627 1.083782 2.141061 3.404118 15 H 2.150708 1.083407 2.153458 3.394377 3.895910 16 H 1.083684 2.149000 3.389413 3.863264 3.409125 6 7 8 9 10 6 C 0.000000 7 H 1.084624 0.000000 8 C 2.471508 2.657917 0.000000 9 C 3.738071 3.991015 1.333405 0.000000 10 H 4.572483 4.624094 2.103349 1.082454 0.000000 11 H 4.203260 4.681440 2.125522 1.083431 1.841413 12 H 2.606053 2.325997 1.087287 2.077556 2.394971 13 H 3.389588 4.288726 2.763297 2.783756 3.836074 14 H 3.854740 4.939364 4.665753 5.108216 6.188383 15 H 3.391660 4.285123 5.365030 6.295056 7.331973 16 H 2.145965 2.466265 4.617153 5.866411 6.718420 11 12 13 14 15 11 H 0.000000 12 H 3.066492 0.000000 13 H 2.203250 3.824506 0.000000 14 H 4.651776 5.546032 2.451432 0.000000 15 H 6.229178 5.872463 4.279979 2.479937 0.000000 16 H 6.231330 4.655931 4.946294 4.286981 2.480903 16 16 H 0.000000 Stoichiometry C8H8 Framework group CS[SG(C8H8)] Deg. of freedom 29 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.655848 -1.223416 0.000000 2 6 0 0.647000 -2.179237 0.000000 3 6 0 -0.685482 -1.769580 0.000000 4 6 0 -1.005229 -0.420401 0.000000 5 6 0 0.000000 0.557838 0.000000 6 6 0 1.333159 0.128666 0.000000 7 1 0 2.124967 0.869914 0.000000 8 6 0 -0.280364 2.000802 0.000000 9 6 0 -1.471724 2.599659 0.000000 10 1 0 -1.547744 3.679440 0.000000 11 1 0 -2.405319 2.049910 0.000000 12 1 0 0.605594 2.631097 0.000000 13 1 0 -2.046998 -0.124007 0.000000 14 1 0 -1.478264 -2.508553 0.000000 15 1 0 0.893096 -3.234324 0.000000 16 1 0 2.695416 -1.529471 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2159931 1.5439490 1.1913160 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 208 symmetry adapted cartesian basis functions of A' symmetry. There are 72 symmetry adapted cartesian basis functions of A" symmetry. There are 192 symmetry adapted basis functions of A' symmetry. There are 72 symmetry adapted basis functions of A" symmetry. 264 basis functions, 400 primitive gaussians, 280 cartesian basis functions 28 alpha electrons 28 beta electrons nuclear repulsion energy 320.4530384194 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 9 ShMem 1 Linda. NBasis= 264 RedAO= T EigKep= 3.73D-06 NBF= 192 72 NBsUse= 264 1.00D-06 EigRej= -1.00D+00 NBFU= 192 72 ExpMin= 4.38D-02 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A") (A") Virtual (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -309.739303893 A.U. after 13 cycles NFock= 13 Conv=0.37D-08 -V/T= 2.0045 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 264 NBasis= 264 NAE= 28 NBE= 28 NFC= 0 NFV= 0 NROrb= 264 NOA= 28 NOB= 28 NVA= 236 NVB= 236 **** Warning!!: The largest alpha MO coefficient is 0.20107013D+03 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 9 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 16 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.20D-13 3.33D-08 XBig12= 2.61D+01 1.42D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.20D-13 3.33D-08 XBig12= 1.11D-01 1.81D-01. 3 vectors produced by pass 2 Test12= 2.20D-13 3.33D-08 XBig12= 5.53D-04 1.12D-02. 3 vectors produced by pass 3 Test12= 2.20D-13 3.33D-08 XBig12= 1.12D-06 4.04D-04. 3 vectors produced by pass 4 Test12= 2.20D-13 3.33D-08 XBig12= 3.66D-09 2.51D-05. 3 vectors produced by pass 5 Test12= 2.20D-13 3.33D-08 XBig12= 1.58D-11 1.29D-06. 1 vectors produced by pass 6 Test12= 2.20D-13 3.33D-08 XBig12= 3.73D-14 5.06D-08. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 19 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 50.0209 Anisotropy = 182.5789 XX= -53.4663 YX= 28.9668 ZX= 0.0000 XY= 29.8638 YY= 31.7888 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 171.7401 Eigenvalues: -62.6304 40.9528 171.7401 2 C Isotropic = 50.6606 Anisotropy = 182.7254 XX= 33.9758 YX= 23.5477 ZX= 0.0000 XY= 22.9419 YY= -54.4716 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 172.4775 Eigenvalues: -60.2084 39.7127 172.4775 3 C Isotropic = 50.3566 Anisotropy = 183.4497 XX= -14.9335 YX= -51.1616 ZX= 0.0000 XY= -51.7797 YY= -6.6531 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 172.6564 Eigenvalues: -62.4302 40.8436 172.6564 4 C Isotropic = 56.4867 Anisotropy = 183.1283 XX= -44.8762 YX= 21.5776 ZX= 0.0000 XY= 22.9593 YY= 35.7640 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 178.5722 Eigenvalues: -50.6169 41.5047 178.5722 5 C Isotropic = 40.5366 Anisotropy = 197.4622 XX= 1.9834 YX= 15.4886 ZX= 0.0000 XY= 14.0388 YY= -52.5516 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 172.1781 Eigenvalues: -56.2919 5.7237 172.1781 6 C Isotropic = 48.0967 Anisotropy = 163.2357 XX= -11.8845 YX= -46.2868 ZX= 0.0000 XY= -44.8979 YY= -0.7460 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 156.9205 Eigenvalues: -52.2465 39.6160 156.9205 7 H Isotropic = 24.5974 Anisotropy = 6.5004 XX= 25.6565 YX= -2.3977 ZX= 0.0000 XY= -3.1810 YY= 26.5549 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.5808 Eigenvalues: 21.5808 23.2804 28.9310 8 C Isotropic = 37.9455 Anisotropy = 147.0685 XX= 16.5424 YX= -57.6516 ZX= 0.0000 XY= -59.3322 YY= -38.6969 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 135.9912 Eigenvalues: -75.7623 53.6077 135.9912 9 C Isotropic = 68.3881 Anisotropy = 150.9949 XX= 58.5984 YX= -40.7779 ZX= 0.0000 XY= -42.7892 YY= -22.4854 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 169.0514 Eigenvalues: -40.1630 76.2760 169.0514 10 H Isotropic = 26.6305 Anisotropy = 4.5961 XX= 28.4916 YX= -2.8748 ZX= 0.0000 XY= -1.3458 YY= 25.9926 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.4072 Eigenvalues: 24.7897 25.4072 29.6945 11 H Isotropic = 25.7977 Anisotropy = 5.2673 XX= 27.2599 YX= -0.8376 ZX= 0.0000 XY= -4.1200 YY= 26.3108 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 23.8223 Eigenvalues: 23.8223 24.2615 29.3092 12 H Isotropic = 24.9881 Anisotropy = 6.8014 XX= 26.8159 YX= -3.1346 ZX= 0.0000 XY= -3.5394 YY= 25.4081 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 22.7404 Eigenvalues: 22.7016 22.7404 29.5224 13 H Isotropic = 23.8657 Anisotropy = 7.6430 XX= 22.6285 YX= 0.1572 ZX= 0.0000 XY= 1.1215 YY= 28.8965 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 20.0722 Eigenvalues: 20.0722 22.5639 28.9611 14 H Isotropic = 24.3900 Anisotropy = 5.3576 XX= 25.6013 YX= -2.0564 ZX= 0.0000 XY= -2.0152 YY= 26.2058 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3627 Eigenvalues: 21.3627 23.8455 27.9617 15 H Isotropic = 24.4656 Anisotropy = 4.9770 XX= 27.5763 YX= 0.8646 ZX= 0.0000 XY= 0.8641 YY= 24.1799 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.6405 Eigenvalues: 21.6405 23.9726 27.7836 16 H Isotropic = 24.3828 Anisotropy = 5.1855 XX= 24.1238 YX= 0.9891 ZX= 0.0000 XY= 1.0463 YY= 27.5611 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.4635 Eigenvalues: 21.4635 23.8451 27.8398 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") Virtual (A") (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A") (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -10.18826 -10.18210 -10.17879 -10.17849 -10.17802 Alpha occ. eigenvalues -- -10.17776 -10.17761 -10.16981 -0.86809 -0.79739 Alpha occ. eigenvalues -- -0.75463 -0.73311 -0.63143 -0.61188 -0.56614 Alpha occ. eigenvalues -- -0.52148 -0.48172 -0.46280 -0.44680 -0.42802 Alpha occ. eigenvalues -- -0.42002 -0.38381 -0.37793 -0.35267 -0.34601 Alpha occ. eigenvalues -- -0.31004 -0.26243 -0.23482 Alpha virt. eigenvalues -- -0.04928 -0.01828 0.00248 0.01567 0.01726 Alpha virt. eigenvalues -- 0.03286 0.03682 0.03760 0.05314 0.05802 Alpha virt. eigenvalues -- 0.06582 0.06723 0.08041 0.08804 0.09963 Alpha virt. eigenvalues -- 0.10305 0.10767 0.11716 0.12490 0.13860 Alpha virt. eigenvalues -- 0.14070 0.14479 0.15093 0.16079 0.16678 Alpha virt. eigenvalues -- 0.16955 0.17199 0.17616 0.19508 0.19941 Alpha virt. eigenvalues -- 0.19999 0.20153 0.21082 0.21750 0.21875 Alpha virt. eigenvalues -- 0.22806 0.23251 0.23583 0.24378 0.25442 Alpha virt. eigenvalues -- 0.26403 0.26996 0.28782 0.29363 0.30901 Alpha virt. eigenvalues -- 0.32041 0.32205 0.33520 0.37028 0.40314 Alpha virt. eigenvalues -- 0.42924 0.46074 0.46789 0.48920 0.50035 Alpha virt. eigenvalues -- 0.51314 0.51580 0.52139 0.52566 0.52848 Alpha virt. eigenvalues -- 0.52972 0.53154 0.55628 0.55850 0.57199 Alpha virt. eigenvalues -- 0.57314 0.59976 0.61112 0.62310 0.63754 Alpha virt. eigenvalues -- 0.63788 0.64164 0.65650 0.65809 0.67338 Alpha virt. eigenvalues -- 0.69095 0.70183 0.70237 0.71335 0.73817 Alpha virt. eigenvalues -- 0.74782 0.76744 0.77867 0.78014 0.78173 Alpha virt. eigenvalues -- 0.79342 0.79620 0.80737 0.81068 0.83316 Alpha virt. eigenvalues -- 0.84205 0.84324 0.85266 0.86367 0.87189 Alpha virt. eigenvalues -- 0.89516 0.91442 0.96881 1.01786 1.04846 Alpha virt. eigenvalues -- 1.07071 1.08101 1.10849 1.13659 1.16049 Alpha virt. eigenvalues -- 1.16125 1.17340 1.22171 1.22213 1.24433 Alpha virt. eigenvalues -- 1.28069 1.29748 1.30720 1.31920 1.33378 Alpha virt. eigenvalues -- 1.34790 1.35908 1.36775 1.39448 1.44065 Alpha virt. eigenvalues -- 1.44744 1.48774 1.50682 1.52968 1.56649 Alpha virt. eigenvalues -- 1.58526 1.59624 1.61597 1.66891 1.69654 Alpha virt. eigenvalues -- 1.72431 1.75968 1.76161 1.78126 1.78169 Alpha virt. eigenvalues -- 1.90016 1.92422 1.95621 1.99761 2.06981 Alpha virt. eigenvalues -- 2.09064 2.14508 2.19082 2.21885 2.28535 Alpha virt. eigenvalues -- 2.30313 2.33121 2.34409 2.43373 2.49839 Alpha virt. eigenvalues -- 2.58976 2.63550 2.65722 2.66637 2.67126 Alpha virt. eigenvalues -- 2.71379 2.73303 2.74641 2.75186 2.77178 Alpha virt. eigenvalues -- 2.77955 2.81054 2.83877 2.83957 2.83970 Alpha virt. eigenvalues -- 2.86293 2.90799 2.93855 2.96713 3.02068 Alpha virt. eigenvalues -- 3.03963 3.08369 3.09418 3.09842 3.12994 Alpha virt. eigenvalues -- 3.16478 3.18652 3.19480 3.21832 3.25424 Alpha virt. eigenvalues -- 3.26994 3.29297 3.29355 3.29806 3.32520 Alpha virt. eigenvalues -- 3.33892 3.35420 3.36036 3.41059 3.44508 Alpha virt. eigenvalues -- 3.46288 3.47496 3.50111 3.50562 3.55707 Alpha virt. eigenvalues -- 3.57285 3.59478 3.59765 3.60854 3.62264 Alpha virt. eigenvalues -- 3.62645 3.65441 3.68308 3.68430 3.70805 Alpha virt. eigenvalues -- 3.74877 3.75371 3.76445 3.76859 3.83671 Alpha virt. eigenvalues -- 3.85886 3.87745 3.91985 3.93596 3.94571 Alpha virt. eigenvalues -- 3.97170 4.01367 4.09621 4.12776 4.17861 Alpha virt. eigenvalues -- 4.26129 4.54170 4.57086 4.65480 4.78773 Alpha virt. eigenvalues -- 4.82306 5.09316 5.29960 23.66663 23.85719 Alpha virt. eigenvalues -- 24.00135 24.03743 24.06572 24.12682 24.14959 Alpha virt. eigenvalues -- 24.21649 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.392100 0.312816 0.225346 -0.217086 0.275920 0.040266 2 C 0.312816 5.025399 0.309319 0.168824 -0.316999 0.176006 3 C 0.225346 0.309319 5.358133 0.183255 0.174371 -0.358423 4 C -0.217086 0.168824 0.183255 5.646204 0.300657 -0.066860 5 C 0.275920 -0.316999 0.174371 0.300657 5.456162 -0.202191 6 C 0.040266 0.176006 -0.358423 -0.066860 -0.202191 5.885037 7 H -0.046122 0.026186 -0.007500 0.002279 -0.101846 0.445523 8 C -0.123748 0.045618 -0.067615 -0.015252 -0.483124 0.435626 9 C -0.042844 0.008400 0.032224 0.163200 0.080421 -0.186459 10 H 0.000388 0.000093 0.000264 0.000236 0.019339 0.000835 11 H 0.003762 -0.002147 0.021608 0.019146 -0.055930 -0.014446 12 H 0.015677 -0.000723 -0.000262 -0.005866 -0.110206 0.009489 13 H -0.007122 0.022961 -0.057560 0.405424 -0.060277 0.021392 14 H 0.025030 -0.072324 0.420521 -0.061441 0.032819 -0.006898 15 H -0.079264 0.437259 -0.080009 0.032439 -0.006661 0.032197 16 H 0.409521 -0.064827 0.022544 -0.009486 0.018925 -0.042390 7 8 9 10 11 12 1 C -0.046122 -0.123748 -0.042844 0.000388 0.003762 0.015677 2 C 0.026186 0.045618 0.008400 0.000093 -0.002147 -0.000723 3 C -0.007500 -0.067615 0.032224 0.000264 0.021608 -0.000262 4 C 0.002279 -0.015252 0.163200 0.000236 0.019146 -0.005866 5 C -0.101846 -0.483124 0.080421 0.019339 -0.055930 -0.110206 6 C 0.445523 0.435626 -0.186459 0.000835 -0.014446 0.009489 7 H 0.589269 0.007376 0.001165 -0.000074 0.000073 0.007192 8 C 0.007376 5.629084 0.310256 -0.015373 0.010849 0.458673 9 C 0.001165 0.310256 5.255777 0.375419 0.372220 -0.055181 10 H -0.000074 -0.015373 0.375419 0.574609 -0.041727 -0.011808 11 H 0.000073 0.010849 0.372220 -0.041727 0.587519 0.008361 12 H 0.007192 0.458673 -0.055181 -0.011808 0.008361 0.605364 13 H -0.000477 -0.001410 0.000370 -0.000099 0.002886 -0.000104 14 H 0.000102 -0.002212 0.000134 -0.000002 0.000046 0.000028 15 H -0.000419 0.000371 -0.000149 0.000000 0.000000 -0.000002 16 H -0.006370 0.001330 0.000231 -0.000001 0.000000 -0.000051 13 14 15 16 1 C -0.007122 0.025030 -0.079264 0.409521 2 C 0.022961 -0.072324 0.437259 -0.064827 3 C -0.057560 0.420521 -0.080009 0.022544 4 C 0.405424 -0.061441 0.032439 -0.009486 5 C -0.060277 0.032819 -0.006661 0.018925 6 C 0.021392 -0.006898 0.032197 -0.042390 7 H -0.000477 0.000102 -0.000419 -0.006370 8 C -0.001410 -0.002212 0.000371 0.001330 9 C 0.000370 0.000134 -0.000149 0.000231 10 H -0.000099 -0.000002 0.000000 -0.000001 11 H 0.002886 0.000046 0.000000 0.000000 12 H -0.000104 0.000028 -0.000002 -0.000051 13 H 0.603721 -0.006809 -0.000435 0.000112 14 H -0.006809 0.593225 -0.005522 -0.000427 15 H -0.000435 -0.005522 0.591786 -0.005728 16 H 0.000112 -0.000427 -0.005728 0.592550 Mulliken charges: 1 1 C -0.184642 2 C -0.075862 3 C -0.176215 4 C -0.545674 5 C 0.978620 6 C -0.168702 7 H 0.083642 8 C -0.190448 9 C -0.315184 10 H 0.097900 11 H 0.087781 12 H 0.079421 13 H 0.077429 14 H 0.083729 15 H 0.084139 16 H 0.084067 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.100575 2 C 0.008277 3 C -0.092487 4 C -0.468246 5 C 0.978620 6 C -0.085059 8 C -0.111027 9 C -0.129503 Electronic spatial extent (au): = 989.0889 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0885 Y= -0.1937 Z= 0.0000 Tot= 0.2130 Quadrupole moment (field-independent basis, Debye-Ang): XX= -42.9146 YY= -43.4369 ZZ= -53.4610 XY= 0.2942 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.6896 YY= 3.1673 ZZ= -6.8568 XY= 0.2942 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.5648 YYY= -3.2303 ZZZ= 0.0000 XYY= 1.0667 XXY= -0.9086 XXZ= 0.0000 XZZ= 0.4056 YZZ= -0.7466 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -410.3212 YYYY= -823.3371 ZZZZ= -66.0149 XXXY= 110.6980 XXXZ= 0.0000 YYYX= 109.4403 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -207.3599 XXZZ= -94.7369 YYZZ= -182.2614 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 45.6009 N-N= 3.204530384194D+02 E-N=-1.358860125210D+03 KE= 3.083507978094D+02 Symmetry A' KE= 2.998620872976D+02 Symmetry A" KE= 8.488710511791D+00 1\1\GINC-COMPUTE-0-1\SP\RB3LYP\6-311+G(2d,p)\C8H8\ZDANOVSKAIA\11-Jan-2 018\0\\#N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity\\Polystyrene\\0,1\ C\C,1,1.389736691\C,2,1.394032689,1,119.4565824\C,3,1.386550438,2,120. 4222309,1,0.,0\C,4,1.402653515,3,120.8876385,2,0.,0\C,1,1.390055368,2, 120.0307844,3,0.,0\H,6,1.08462367,1,119.687916,2,180.,0\C,5,1.46994866 5,6,118.8398787,1,180.,0\C,8,1.333404798,5,127.6825699,6,180.,0\H,9,1. 082453716,8,120.7143126,5,180.,0\H,9,1.083431395,8,122.8210706,5,0.,0\ H,8,1.087287158,5,114.4336813,6,0.,0\H,4,1.083112207,5,119.8980049,6,1 80.,0\H,3,1.083782448,4,119.6553262,5,180.,0\H,2,1.083407276,1,120.324 6593,6,180.,0\H,1,1.083684411,2,120.1412618,3,180.,0\\Version=EM64L-G0 9RevD.01\State=1-A'\HF=-309.7393039\RMSD=3.712e-09\Dipole=-0.079268,0. ,0.0271365\Quadrupole=2.3200222,-5.0978746,2.7778525,0.,0.1820726,0.\P G=CS [SG(C8H8)]\\@ IT IS A SIMPLE TASK TO MAKE THINGS COMPLEX, BUT A COMPLEX TASK TO MAKE THEM SIMPLE. Job cpu time: 0 days 0 hours 11 minutes 25.8 seconds. File lengths (MBytes): RWF= 42 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 09 at Thu Jan 11 20:42:00 2018.