Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/200425/Gau-23323.inp" -scrdir="/scratch/webmo-13362/200425/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 23324. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 11-Jan-2018 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. -------------------------------------------- #N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------- Benzene ------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 H 5 B7 6 A6 1 D5 0 H 4 B8 5 A7 6 D6 0 H 3 B9 4 A8 5 D7 0 H 2 B10 1 A9 6 D8 0 H 1 B11 2 A10 3 D9 0 Variables: B1 1.39185 B2 1.39185 B3 1.39185 B4 1.39185 B5 1.39185 B6 1.08376 B7 1.08376 B8 1.08376 B9 1.08376 B10 1.08376 B11 1.08376 A1 120.00002 A2 120.00002 A3 119.99995 A4 119.99995 A5 119.99996 A6 120.00002 A7 120.00002 A8 119.99996 A9 119.99996 A10 120.00002 D1 0. D2 0. D3 0. D4 180. D5 180. D6 180. D7 180. D8 180. D9 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.391851 3 6 0 1.205377 0.000000 2.087776 4 6 0 2.410756 0.000000 1.391852 5 6 0 2.410756 0.000000 0.000001 6 6 0 1.205379 0.000000 -0.695924 7 1 0 1.205379 0.000000 -1.779684 8 1 0 3.349320 0.000000 -0.541878 9 1 0 3.349319 0.000000 1.933732 10 1 0 1.205377 0.000000 3.171536 11 1 0 -0.938564 0.000000 1.933730 12 1 0 -0.938563 0.000000 -0.541880 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.391851 0.000000 3 C 2.410756 1.391850 0.000000 4 C 2.783702 2.410756 1.391851 0.000000 5 C 2.410756 2.783701 2.410756 1.391851 0.000000 6 C 1.391851 2.410756 2.783701 2.410756 1.391850 7 H 2.149468 3.392871 3.867460 3.392871 2.149468 8 H 3.392871 3.867460 3.392871 2.149468 1.083759 9 H 3.867461 3.392871 2.149468 1.083759 2.149468 10 H 3.392871 2.149468 1.083759 2.149468 3.392871 11 H 2.149468 1.083759 2.149468 3.392871 3.867460 12 H 1.083759 2.149468 3.392871 3.867461 3.392871 6 7 8 9 10 6 C 0.000000 7 H 1.083759 0.000000 8 H 2.149468 2.475610 0.000000 9 H 3.392871 4.287882 2.475610 0.000000 10 H 3.867460 4.951220 4.287882 2.475610 0.000000 11 H 3.392871 4.287882 4.951220 4.287882 2.475610 12 H 2.149468 2.475610 4.287882 4.951220 4.287882 11 12 11 H 0.000000 12 H 2.475610 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.391851 0.000000 2 6 0 -1.205378 0.695925 0.000000 3 6 0 -1.205378 -0.695925 0.000000 4 6 0 0.000000 -1.391851 0.000000 5 6 0 1.205378 -0.695925 0.000000 6 6 0 1.205378 0.695925 0.000000 7 1 0 2.143941 1.237805 0.000000 8 1 0 2.143941 -1.237805 0.000000 9 1 0 0.000000 -2.475610 0.000000 10 1 0 -2.143941 -1.237805 0.000000 11 1 0 -2.143941 1.237805 0.000000 12 1 0 0.000000 2.475610 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7253265 5.7253265 2.8626632 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 45 symmetry adapted cartesian basis functions of AG symmetry. There are 33 symmetry adapted cartesian basis functions of B1G symmetry. There are 11 symmetry adapted cartesian basis functions of B2G symmetry. There are 16 symmetry adapted cartesian basis functions of B3G symmetry. There are 11 symmetry adapted cartesian basis functions of AU symmetry. There are 16 symmetry adapted cartesian basis functions of B1U symmetry. There are 45 symmetry adapted cartesian basis functions of B2U symmetry. There are 33 symmetry adapted cartesian basis functions of B3U symmetry. There are 41 symmetry adapted basis functions of AG symmetry. There are 31 symmetry adapted basis functions of B1G symmetry. There are 11 symmetry adapted basis functions of B2G symmetry. There are 16 symmetry adapted basis functions of B3G symmetry. There are 11 symmetry adapted basis functions of AU symmetry. There are 16 symmetry adapted basis functions of B1U symmetry. There are 41 symmetry adapted basis functions of B2U symmetry. There are 31 symmetry adapted basis functions of B3U symmetry. 198 basis functions, 300 primitive gaussians, 210 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.8694006516 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 9 ShMem 1 Linda. NBasis= 198 RedAO= T EigKep= 3.33D-06 NBF= 41 31 11 16 11 16 41 31 NBsUse= 198 1.00D-06 EigRej= -1.00D+00 NBFU= 41 31 11 16 11 16 41 31 ExpMin= 4.38D-02 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B2U) (B1U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (B2G) (E1U) (E1U) (E2G) (E2G) (A1G) (A2U) (B1U) (E1G) (E1G) (B2U) (E1U) (E1U) (E2G) (E2G) (A1G) (E2U) (E2U) (E1U) (E1U) (E2G) (E2G) (B2G) (B1U) (E1U) (E1U) (E2G) (E2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A2G) (A1G) (A2U) (B2U) (B1U) (A2G) (E1U) (E1U) (E2G) (E2G) (A2U) (A1G) (E1G) (E1G) (E2U) (E2U) (B1G) (E2G) (E2G) (E1U) (E1U) (B1U) (B2G) (A1G) (E1G) (E1G) (E1U) (E1U) (A2G) (A1G) (E2U) (E2U) (E2G) (E2G) (E1U) (E1U) (B1U) (E2G) (E2G) (B2U) (E2U) (E2U) (A1G) (E1G) (E1G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2G) (E1U) (E1U) (B1U) (E2G) (E2G) (E1U) (E1U) (A2G) (E2G) (E2G) (A1U) (A2U) (E1G) (E1G) (B1U) (B2U) (E2U) (E2U) (A1G) (B2G) (E1U) (E1U) (E2G) (E2G) (A2U) (A1G) (E1U) (E1U) (A2G) (E1U) (E1U) (E2G) (E2G) (E2U) (E2U) (E1G) (E1G) (B1U) (B2U) (E2G) (E2G) (B1G) (B2G) (A1G) (A2U) (B2U) (E1U) (E1U) (E2U) (E2U) (E1G) (E1G) (B1U) (E2G) (E2G) (A1G) (E2G) (E2G) (E1U) (E1U) (E2U) (E2U) (E1G) (E1G) (B2G) (E1U) (E1U) (A1U) (E2G) (E2G) (A1G) (B1U) (A2G) (B1U) (E2G) (E2G) (E1U) (E1U) (E2G) (E2G) (B1U) (E1U) (E1U) (A2G) (A1G) (E2G) (E2G) (E1U) (E1U) (B1U) The electronic state of the initial guess is 1-A1G. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -232.317433474 A.U. after 8 cycles NFock= 8 Conv=0.30D-08 -V/T= 2.0045 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 198 NBasis= 198 NAE= 21 NBE= 21 NFC= 0 NFV= 0 NROrb= 198 NOA= 21 NOB= 21 NVA= 177 NVB= 177 **** Warning!!: The largest alpha MO coefficient is 0.14633493D+03 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 9 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 12 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 1.24D-13 3.33D-08 XBig12= 5.25D+00 8.73D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.24D-13 3.33D-08 XBig12= 7.37D-03 4.43D-02. 3 vectors produced by pass 2 Test12= 1.24D-13 3.33D-08 XBig12= 4.58D-06 6.29D-04. 3 vectors produced by pass 3 Test12= 1.24D-13 3.33D-08 XBig12= 5.20D-09 3.13D-05. 3 vectors produced by pass 4 Test12= 1.24D-13 3.33D-08 XBig12= 1.06D-11 1.32D-06. 2 vectors produced by pass 5 Test12= 1.24D-13 3.33D-08 XBig12= 1.74D-14 4.25D-08. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 17 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 49.8186 Anisotropy = 186.2899 XX= 39.9084 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -64.4644 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.0119 Eigenvalues: -64.4644 39.9084 174.0119 2 C Isotropic = 50.0008 Anisotropy = 186.1743 XX= -37.9473 YX= 44.9352 ZX= 0.0000 XY= 45.1675 YY= 13.8327 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.1170 Eigenvalues: -64.0180 39.9034 174.1170 3 C Isotropic = 50.0008 Anisotropy = 186.1743 XX= -37.9473 YX= -44.9352 ZX= 0.0000 XY= -45.1675 YY= 13.8327 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.1170 Eigenvalues: -64.0180 39.9034 174.1170 4 C Isotropic = 49.8186 Anisotropy = 186.2899 XX= 39.9084 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -64.4644 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.0119 Eigenvalues: -64.4644 39.9084 174.0119 5 C Isotropic = 50.0008 Anisotropy = 186.1743 XX= -37.9473 YX= 44.9352 ZX= 0.0000 XY= 45.1675 YY= 13.8327 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.1170 Eigenvalues: -64.0180 39.9034 174.1170 6 C Isotropic = 50.0008 Anisotropy = 186.1743 XX= -37.9473 YX= -44.9352 ZX= 0.0000 XY= -45.1675 YY= 13.8327 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 174.1170 Eigenvalues: -64.0180 39.9034 174.1170 7 H Isotropic = 24.3090 Anisotropy = 5.3890 XX= 24.7069 YX= -1.8525 ZX= 0.0000 XY= -1.8594 YY= 26.8234 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3966 Eigenvalues: 21.3966 23.6287 27.9016 8 H Isotropic = 24.3090 Anisotropy = 5.3890 XX= 24.7069 YX= 1.8525 ZX= 0.0000 XY= 1.8594 YY= 26.8234 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3966 Eigenvalues: 21.3966 23.6287 27.9016 9 H Isotropic = 24.2870 Anisotropy = 5.3957 XX= 27.8842 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 23.5815 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3954 Eigenvalues: 21.3954 23.5815 27.8842 10 H Isotropic = 24.3090 Anisotropy = 5.3890 XX= 24.7069 YX= -1.8525 ZX= 0.0000 XY= -1.8594 YY= 26.8234 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3966 Eigenvalues: 21.3966 23.6287 27.9016 11 H Isotropic = 24.3090 Anisotropy = 5.3890 XX= 24.7069 YX= 1.8525 ZX= 0.0000 XY= 1.8594 YY= 26.8234 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3966 Eigenvalues: 21.3966 23.6287 27.9016 12 H Isotropic = 24.2870 Anisotropy = 5.3957 XX= 27.8842 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 23.5815 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3954 Eigenvalues: 21.3954 23.5815 27.8842 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (E1U) (E1U) (E2G) (E2G) (A2U) (A1G) (B1U) (E1G) (E1G) (B2U) (B2G) (E2U) (E2U) (E2G) (E2G) (E1U) (E1U) (A1G) (E1U) (E1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (E2G) (E2G) (A2G) (B1U) (E2G) (E2G) (E1U) (E1U) (A1G) (B2U) (A2U) (B1U) (E1U) (E1U) (E2G) (E2G) (A2U) (E1G) (E1G) (A1G) (A2G) (E2U) (E2U) (E2G) (E2G) (B1G) (E1U) (E1U) (A1G) (B2G) (B1U) (E1G) (E1G) (E1U) (E1U) (A2G) (E1U) (E1U) (E2G) (E2G) (A1G) (E2U) (E2U) (B1U) (E2G) (E2G) (B2U) (E2U) (E2U) (A1G) (B1U) (E1G) (E1G) (B2G) (E2G) (E2G) (E1U) (E1U) (E1U) (E1U) (B1U) (E2G) (E2G) (E1U) (E1U) (A2G) (E2G) (E2G) (A1U) (A2U) (E1G) (E1G) (B1U) (B2U) (E2U) (E2U) (A1G) (B2G) (E2G) (E2G) (E1U) (E1U) (A1G) (A2U) (E1U) (E1U) (A2G) (E1U) (E1U) (E2G) (E2G) (B1U) (E2U) (E2U) (E1G) (E1G) (B2U) (E2G) (E2G) (B1G) (A1G) (A2U) (B2G) (B2U) (E1U) (E1U) (B1U) (E2U) (E2U) (E1G) (E1G) (E2G) (E2G) (A1G) (E2G) (E2G) (E1U) (E1U) (E2U) (E2U) (E1G) (E1G) (B2G) (E1U) (E1U) (A1U) (E2G) (E2G) (A1G) (A2G) (B1U) (B1U) (E2G) (E2G) (E1U) (E1U) (E2G) (E2G) (B1U) (E1U) (E1U) (A2G) (A1G) (E2G) (E2G) (E1U) (E1U) (B1U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -10.17685 -10.17661 -10.17661 -10.17601 -10.17601 Alpha occ. eigenvalues -- -10.17574 -0.86037 -0.75155 -0.75155 -0.60815 Alpha occ. eigenvalues -- -0.60815 -0.52989 -0.46565 -0.45380 -0.42761 Alpha occ. eigenvalues -- -0.42761 -0.37335 -0.35057 -0.35057 -0.25979 Alpha occ. eigenvalues -- -0.25979 Alpha virt. eigenvalues -- -0.01692 -0.01692 0.00458 0.02338 0.02338 Alpha virt. eigenvalues -- 0.04533 0.04533 0.06190 0.07199 0.07793 Alpha virt. eigenvalues -- 0.08917 0.08917 0.09840 0.12518 0.13977 Alpha virt. eigenvalues -- 0.13977 0.14162 0.14162 0.14549 0.14549 Alpha virt. eigenvalues -- 0.16973 0.19545 0.19545 0.20057 0.20625 Alpha virt. eigenvalues -- 0.20625 0.20712 0.20712 0.22490 0.23298 Alpha virt. eigenvalues -- 0.23298 0.26529 0.27896 0.32018 0.32018 Alpha virt. eigenvalues -- 0.32290 0.32290 0.39776 0.44686 0.45449 Alpha virt. eigenvalues -- 0.49185 0.51286 0.51286 0.52322 0.52322 Alpha virt. eigenvalues -- 0.53022 0.53525 0.53525 0.53690 0.54599 Alpha virt. eigenvalues -- 0.60792 0.60792 0.64137 0.64137 0.64425 Alpha virt. eigenvalues -- 0.64921 0.64921 0.66051 0.66671 0.71132 Alpha virt. eigenvalues -- 0.76540 0.76540 0.77383 0.77383 0.80300 Alpha virt. eigenvalues -- 0.81495 0.81495 0.81815 0.81815 0.83331 Alpha virt. eigenvalues -- 0.84123 0.84123 0.85374 1.00071 1.00071 Alpha virt. eigenvalues -- 1.10108 1.12354 1.12354 1.18486 1.21577 Alpha virt. eigenvalues -- 1.22929 1.22929 1.28512 1.30755 1.30755 Alpha virt. eigenvalues -- 1.32881 1.32881 1.34118 1.34118 1.47169 Alpha virt. eigenvalues -- 1.50348 1.50348 1.52940 1.52940 1.56063 Alpha virt. eigenvalues -- 1.56642 1.56642 1.58942 1.62050 1.77963 Alpha virt. eigenvalues -- 1.77963 1.88345 1.92909 1.99288 1.99288 Alpha virt. eigenvalues -- 2.15509 2.21702 2.32107 2.32107 2.33686 Alpha virt. eigenvalues -- 2.33686 2.56639 2.62592 2.65860 2.65860 Alpha virt. eigenvalues -- 2.67544 2.74068 2.74068 2.75343 2.75343 Alpha virt. eigenvalues -- 2.78154 2.83866 2.83866 2.84210 2.84210 Alpha virt. eigenvalues -- 2.99104 2.99312 2.99312 3.04744 3.09686 Alpha virt. eigenvalues -- 3.11103 3.11613 3.14823 3.22843 3.22843 Alpha virt. eigenvalues -- 3.27344 3.29442 3.29442 3.29851 3.29851 Alpha virt. eigenvalues -- 3.37043 3.37043 3.40435 3.43365 3.43365 Alpha virt. eigenvalues -- 3.55814 3.55814 3.57084 3.57084 3.60160 Alpha virt. eigenvalues -- 3.60160 3.65203 3.72855 3.72855 3.74589 Alpha virt. eigenvalues -- 3.78060 3.78060 3.82970 3.87568 3.87917 Alpha virt. eigenvalues -- 3.93070 3.93438 3.93438 4.00029 4.00029 Alpha virt. eigenvalues -- 4.52741 4.52741 4.63203 4.82997 4.82997 Alpha virt. eigenvalues -- 5.29055 23.60930 23.98941 23.98941 24.06165 Alpha virt. eigenvalues -- 24.06165 24.12432 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.976833 0.390831 0.100428 -0.211071 0.100428 0.390831 2 C 0.390831 4.976833 0.390831 0.100428 -0.211071 0.100428 3 C 0.100428 0.390831 4.976833 0.390831 0.100428 -0.211071 4 C -0.211071 0.100428 0.390831 4.976833 0.390831 0.100428 5 C 0.100428 -0.211071 0.100428 0.390831 4.976833 0.390831 6 C 0.390831 0.100428 -0.211071 0.100428 0.390831 4.976833 7 H -0.073105 0.026991 -0.008436 0.026991 -0.073105 0.435382 8 H 0.026991 -0.008436 0.026991 -0.073105 0.435382 -0.073105 9 H -0.008436 0.026991 -0.073105 0.435382 -0.073105 0.026991 10 H 0.026991 -0.073105 0.435382 -0.073105 0.026991 -0.008436 11 H -0.073105 0.435382 -0.073105 0.026991 -0.008436 0.026991 12 H 0.435382 -0.073105 0.026991 -0.008436 0.026991 -0.073105 7 8 9 10 11 12 1 C -0.073105 0.026991 -0.008436 0.026991 -0.073105 0.435382 2 C 0.026991 -0.008436 0.026991 -0.073105 0.435382 -0.073105 3 C -0.008436 0.026991 -0.073105 0.435382 -0.073105 0.026991 4 C 0.026991 -0.073105 0.435382 -0.073105 0.026991 -0.008436 5 C -0.073105 0.435382 -0.073105 0.026991 -0.008436 0.026991 6 C 0.435382 -0.073105 0.026991 -0.008436 0.026991 -0.073105 7 H 0.594867 -0.005936 -0.000410 0.000109 -0.000410 -0.005936 8 H -0.005936 0.594867 -0.005936 -0.000410 0.000109 -0.000410 9 H -0.000410 -0.005936 0.594867 -0.005936 -0.000410 0.000109 10 H 0.000109 -0.000410 -0.005936 0.594867 -0.005936 -0.000410 11 H -0.000410 0.000109 -0.000410 -0.005936 0.594867 -0.005936 12 H -0.005936 -0.000410 0.000109 -0.000410 -0.005936 0.594867 Mulliken charges: 1 1 C -0.082998 2 C -0.082998 3 C -0.082998 4 C -0.082998 5 C -0.082998 6 C -0.082998 7 H 0.082998 8 H 0.082998 9 H 0.082998 10 H 0.082998 11 H 0.082998 12 H 0.082998 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 3 C 0.000000 4 C 0.000000 5 C 0.000000 6 C 0.000000 Electronic spatial extent (au): = 458.0460 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -32.1558 YY= -32.1558 ZZ= -40.1730 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.6724 YY= 2.6724 ZZ= -5.3448 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -276.2540 YYYY= -276.2540 ZZZZ= -50.0258 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -92.0847 XXZZ= -64.8628 YYZZ= -64.8628 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.038694006516D+02 E-N=-9.463083897378D+02 KE= 2.312843712251D+02 Symmetry AG KE= 7.452160491970D+01 Symmetry B1G KE= 3.771534510225D+01 Symmetry B2G KE= 2.231800256797D+00 Symmetry B3G KE= 2.231800256797D+00 Symmetry AU KE=-5.479315502492D-17 Symmetry B1U KE= 1.875892780283D+00 Symmetry B2U KE= 7.212381491543D+01 Symmetry B3U KE= 4.058411299390D+01 1\1\GINC-COMPUTE-0-13\SP\RB3LYP\6-311+G(2d,p)\C6H6\ZDANOVSKAIA\11-Jan- 2018\0\\#N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity\\Benzene\\0,1\C\C ,1,1.391850969\C,2,1.39185,1,120.0000245\C,3,1.391850969,2,120.0000245 ,1,0.,0\C,4,1.391850969,3,119.999951,2,0.,0\C,1,1.391850969,2,119.9999 51,3,0.,0\H,6,1.083759401,1,119.9999572,2,180.,0\H,5,1.083759401,6,120 .0000183,1,180.,0\H,4,1.083759,5,120.0000245,6,180.,0\H,3,1.083759401, 4,119.9999572,5,180.,0\H,2,1.083759401,1,119.9999572,6,180.,0\H,1,1.08 3759,2,120.0000245,3,180.,0\\Version=EM64L-G09RevD.01\State=1-A1G\HF=- 232.3174335\RMSD=3.035e-09\Dipole=0.,0.,0.\Quadrupole=1.9868749,-3.973 7499,1.9868749,0.,0.,0.\PG=D06H [3C2'(H1C1.C1H1)]\\@ EDUCATION IS NOT TRAINING BUT RATHER THE PROCESS THAT EQUIPS YOU TO ENTERTAIN YOURSELF, A FRIEND, OR AN IDEA. -- WALLACE STERLING Job cpu time: 0 days 0 hours 2 minutes 33.7 seconds. File lengths (MBytes): RWF= 25 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu Jan 11 20:43:41 2018.