Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/350903/Gau-25223.inp" -scrdir="/scratch/webmo-13362/350903/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 25224. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 21-Mar-2019 ****************************************** ---------------------------------------------------------------------- #N MP2/6-31G(d) SP GFINPUT POP=(FULL,NBORead) SCRF=(PCM,Solvent=Water) Geom=Connectivity ---------------------------------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=9,16=1,24=10,25=1,30=1,70=2201,72=1/1,2,3; 4//1; 5/5=2,38=5,53=1/2; 8/10=2/1; 9/16=-3/6; 6/7=3,40=2/1,7; 99/5=1,9=1/99; --------- Hydroxide --------- Symbolic Z-matrix: Charge = -1 Multiplicity = 1 O H 1 B1 Variables: B1 0.97362 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 0.973621 --------------------------------------------------------------------- Stoichiometry HO(1-) Framework group C*V[C*(HO)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.000000 0.000000 0.108180 2 1 0 0.000000 0.000000 -0.865441 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 562.3272977 562.3272977 Standard basis: 6-31G(d) (6D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 6 1.00 0.000000000000 0.5484671660D+04 0.1831074430D-02 0.8252349460D+03 0.1395017220D-01 0.1880469580D+03 0.6844507810D-01 0.5296450000D+02 0.2327143360D+00 0.1689757040D+02 0.4701928980D+00 0.5799635340D+01 0.3585208530D+00 SP 3 1.00 0.000000000000 0.1553961625D+02 -0.1107775495D+00 0.7087426823D-01 0.3599933586D+01 -0.1480262627D+00 0.3397528391D+00 0.1013761750D+01 0.1130767015D+01 0.7271585773D+00 SP 1 1.00 0.000000000000 0.2700058226D+00 0.1000000000D+01 0.1000000000D+01 D 1 1.00 0.000000000000 0.8000000000D+00 0.1000000000D+01 **** 2 0 S 3 1.00 0.000000000000 0.1873113696D+02 0.3349460434D-01 0.2825394365D+01 0.2347269535D+00 0.6401216923D+00 0.8137573261D+00 S 1 1.00 0.000000000000 0.1612777588D+00 0.1000000000D+01 **** There are 10 symmetry adapted cartesian basis functions of A1 symmetry. There are 1 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 3 symmetry adapted cartesian basis functions of B2 symmetry. There are 10 symmetry adapted basis functions of A1 symmetry. There are 1 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 3 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 32 primitive gaussians, 17 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 4.3481166375 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : PCM (using non-symmetric T matrix). Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 2. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Water, Eps= 78.355300 Eps(inf)= 1.777849 ------------------------------------------------------------------------------ Spheres list: ISph on Nord Re0 Alpha Xe Ye Ze 1 O 1 1.7500 1.100 0.000000 0.000000 0.108180 2 H 2 1.4430 1.100 0.000000 0.000000 -0.865441 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 6.32D-02 NBF= 10 1 3 3 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 3 3 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) The electronic state of the initial guess is 1-SG. Keep R1 ints in memory in symmetry-blocked form, NReq=3021549. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 359148. Iteration 1 A*A^-1 deviation from unit magnitude is 2.89D-15 for 41. Iteration 1 A*A^-1 deviation from orthogonality is 1.44D-15 for 140 80. Iteration 1 A^-1*A deviation from unit magnitude is 3.44D-15 for 95. Iteration 1 A^-1*A deviation from orthogonality is 4.70D-15 for 300 128. Error on total polarization charges = 0.00325 SCF Done: E(RHF) = -75.4638366362 A.U. after 10 cycles NFock= 10 Conv=0.93D-09 -V/T= 2.0013 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14 ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Range of M.O.s used for correlation: 2 17 NBasis= 17 NAE= 5 NBE= 5 NFC= 1 NFV= 0 NROrb= 16 NOA= 4 NOB= 4 NVA= 12 NVB= 12 Fully in-core method, ICMem= 6039251. JobTyp=1 Pass 1 fully in-core, NPsUse= 1. Spin components of T(2) and E(2): alpha-alpha T2 = 0.6493685503D-02 E2= -0.2471267334D-01 alpha-beta T2 = 0.3667385918D-01 E2= -0.1370750598D+00 beta-beta T2 = 0.6493685503D-02 E2= -0.2471267334D-01 ANorm= 0.1024529761D+01 E2 = -0.1865004065D+00 EUMP2 = -0.75650337042713D+02 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (DLTA) (DLTA) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -20.34880 -1.07959 -0.43146 -0.29932 -0.29932 Alpha virt. eigenvalues -- 0.33148 1.19996 1.22952 1.32688 1.32688 Alpha virt. eigenvalues -- 1.54103 2.23427 2.23427 2.28969 2.28969 Alpha virt. eigenvalues -- 2.95679 3.99342 Molecular Orbital Coefficients: 1 2 3 4 5 O O O O O Eigenvalues -- -20.34880 -1.07959 -0.43146 -0.29932 -0.29932 1 1 O 1S 0.99475 -0.21505 -0.07370 0.00000 0.00000 2 2S 0.02082 0.45964 0.12178 0.00000 0.00000 3 2PX 0.00000 0.00000 0.00000 0.00000 0.59401 4 2PY 0.00000 0.00000 0.00000 0.59401 0.00000 5 2PZ -0.00103 -0.07421 0.46964 0.00000 0.00000 6 3S 0.00370 0.51710 0.42688 0.00000 0.00000 7 3PX 0.00000 0.00000 0.00000 0.00000 0.55963 8 3PY 0.00000 0.00000 0.00000 0.55963 0.00000 9 3PZ 0.00042 -0.03423 0.33647 0.00000 0.00000 10 4XX -0.00377 -0.00492 -0.00804 0.00000 0.00000 11 4YY -0.00377 -0.00492 -0.00804 0.00000 0.00000 12 4ZZ -0.00405 0.02018 -0.05807 0.00000 0.00000 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 0.00000 -0.02272 15 4YZ 0.00000 0.00000 0.00000 -0.02272 0.00000 16 2 H 1S 0.00033 0.14904 -0.27185 0.00000 0.00000 17 2S -0.00011 0.03158 -0.26583 0.00000 0.00000 6 7 8 9 10 V V V V V Eigenvalues -- 0.33148 1.19996 1.22952 1.32688 1.32688 1 1 O 1S 0.07721 -0.01604 -0.05600 0.00000 0.00000 2 2S -0.04089 -1.11497 -0.50358 0.00000 0.00000 3 2PX 0.00000 0.00000 0.00000 -0.99153 0.00000 4 2PY 0.00000 0.00000 0.00000 0.00000 -0.99153 5 2PZ 0.26302 -0.34694 -0.44452 0.00000 0.00000 6 3S -1.08779 2.10129 1.28199 0.00000 0.00000 7 3PX 0.00000 0.00000 0.00000 1.01120 0.00000 8 3PY 0.00000 0.00000 0.00000 0.00000 1.01120 9 3PZ 0.71076 0.49871 -0.29956 0.00000 0.00000 10 4XX 0.05187 -0.43254 -0.12863 0.00000 0.00000 11 4YY 0.05187 -0.43254 -0.12863 0.00000 0.00000 12 4ZZ 0.01108 -0.32065 -0.40616 0.00000 0.00000 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 -0.00555 0.00000 15 4YZ 0.00000 0.00000 0.00000 0.00000 -0.00555 16 2 H 1S 0.00701 0.60419 -1.09424 0.00000 0.00000 17 2S 1.67316 -0.72330 0.26971 0.00000 0.00000 11 12 13 14 15 V V V V V Eigenvalues -- 1.54103 2.23427 2.23427 2.28969 2.28969 1 1 O 1S -0.04290 0.00000 0.00000 0.00000 0.00000 2 2S -0.95333 0.00000 0.00000 0.00000 0.00000 3 2PX 0.00000 0.00000 0.00799 0.00000 0.00000 4 2PY 0.00000 0.00799 0.00000 0.00000 0.00000 5 2PZ 0.88757 0.00000 0.00000 0.00000 0.00000 6 3S 2.26649 0.00000 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.01834 0.00000 0.00000 8 3PY 0.00000 0.01834 0.00000 0.00000 0.00000 9 3PZ -1.39971 0.00000 0.00000 0.00000 0.00000 10 4XX -0.25571 0.00000 0.00000 0.00000 0.86603 11 4YY -0.25571 0.00000 0.00000 0.00000 -0.86603 12 4ZZ -0.36020 0.00000 0.00000 0.00000 0.00000 13 4XY 0.00000 0.00000 0.00000 1.00000 0.00000 14 4XZ 0.00000 0.00000 0.99973 0.00000 0.00000 15 4YZ 0.00000 0.99973 0.00000 0.00000 0.00000 16 2 H 1S -0.08238 0.00000 0.00000 0.00000 0.00000 17 2S -1.14070 0.00000 0.00000 0.00000 0.00000 16 17 V V Eigenvalues -- 2.95679 3.99342 1 1 O 1S 0.04196 -0.43410 2 2S 0.29089 0.53240 3 2PX 0.00000 0.00000 4 2PY 0.00000 0.00000 5 2PZ -0.05927 0.10923 6 3S -0.98036 2.88104 7 3PX 0.00000 0.00000 8 3PY 0.00000 0.00000 9 3PZ 0.78770 -0.26739 10 4XX 0.67916 -1.42125 11 4YY 0.67916 -1.42125 12 4ZZ -1.10467 -1.42704 13 4XY 0.00000 0.00000 14 4XZ 0.00000 0.00000 15 4YZ 0.00000 0.00000 16 2 H 1S 1.20624 0.17482 17 2S 0.08411 -0.59124 Density Matrix: 1 2 3 4 5 1 1 O 1S 2.08242 2 2S -0.17421 0.45306 3 2PX 0.00000 0.00000 0.70571 4 2PY 0.00000 0.00000 0.00000 0.70571 5 2PZ -0.03936 0.04612 0.00000 0.00000 0.45214 6 3S -0.27795 0.57948 0.00000 0.00000 0.32421 7 3PX 0.00000 0.00000 0.66486 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.66486 0.00000 9 3PZ -0.03404 0.05050 0.00000 0.00000 0.32112 10 4XX -0.00420 -0.00664 0.00000 0.00000 -0.00682 11 4YY -0.00420 -0.00664 0.00000 0.00000 -0.00682 12 4ZZ -0.00817 0.00424 0.00000 0.00000 -0.05753 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 -0.02699 0.00000 0.00000 15 4YZ 0.00000 0.00000 0.00000 -0.02699 0.00000 16 2 H 1S -0.02338 0.07081 0.00000 0.00000 -0.27746 17 2S 0.02538 -0.03571 0.00000 0.00000 -0.25437 6 7 8 9 10 6 3S 0.89926 7 3PX 0.00000 0.62638 8 3PY 0.00000 0.00000 0.62638 9 3PZ 0.25187 0.00000 0.00000 0.22877 10 4XX -0.01198 0.00000 0.00000 -0.00508 0.00021 11 4YY -0.01198 0.00000 0.00000 -0.00508 0.00021 12 4ZZ -0.02874 0.00000 0.00000 -0.04047 0.00077 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 -0.02543 0.00000 0.00000 0.00000 15 4YZ 0.00000 0.00000 -0.02543 0.00000 0.00000 16 2 H 1S -0.07796 0.00000 0.00000 -0.19314 0.00290 17 2S -0.19429 0.00000 0.00000 -0.18105 0.00397 11 12 13 14 15 11 4YY 0.00021 12 4ZZ 0.00077 0.00759 13 4XY 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 0.00103 15 4YZ 0.00000 0.00000 0.00000 0.00000 0.00103 16 2 H 1S 0.00290 0.03759 0.00000 0.00000 0.00000 17 2S 0.00397 0.03215 0.00000 0.00000 0.00000 16 17 16 2 H 1S 0.19223 17 2S 0.15394 0.14332 Full Mulliken population analysis: 1 2 3 4 5 1 1 O 1S 2.08242 2 2S -0.04071 0.45306 3 2PX 0.00000 0.00000 0.70571 4 2PY 0.00000 0.00000 0.00000 0.70571 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.45214 6 3S -0.04650 0.44251 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.33344 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.33344 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.16105 10 4XX -0.00014 -0.00363 0.00000 0.00000 0.00000 11 4YY -0.00014 -0.00363 0.00000 0.00000 0.00000 12 4ZZ -0.00027 0.00232 0.00000 0.00000 0.00000 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 0.00000 0.00000 15 4YZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 2 H 1S -0.00077 0.01685 0.00000 0.00000 0.07718 17 2S 0.00172 -0.01338 0.00000 0.00000 0.03763 6 7 8 9 10 6 3S 0.89926 7 3PX 0.00000 0.62638 8 3PY 0.00000 0.00000 0.62638 9 3PZ 0.00000 0.00000 0.00000 0.22877 10 4XX -0.00838 0.00000 0.00000 0.00000 0.00021 11 4YY -0.00838 0.00000 0.00000 0.00000 0.00007 12 4ZZ -0.02009 0.00000 0.00000 0.00000 0.00026 13 4XY 0.00000 0.00000 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 0.00000 0.00000 15 4YZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 2 H 1S -0.03262 0.00000 0.00000 0.11218 0.00047 17 2S -0.13141 0.00000 0.00000 0.08756 0.00156 11 12 13 14 15 11 4YY 0.00021 12 4ZZ 0.00026 0.00759 13 4XY 0.00000 0.00000 0.00000 14 4XZ 0.00000 0.00000 0.00000 0.00103 15 4YZ 0.00000 0.00000 0.00000 0.00000 0.00103 16 2 H 1S 0.00047 0.02048 0.00000 0.00000 0.00000 17 2S 0.00156 0.01499 0.00000 0.00000 0.00000 16 17 16 2 H 1S 0.19223 17 2S 0.10134 0.14332 Gross orbital populations: 1 1 1 O 1S 1.99562 2 2S 0.85338 3 2PX 1.03915 4 2PY 1.03915 5 2PZ 0.72800 6 3S 1.09441 7 3PX 0.95982 8 3PY 0.95982 9 3PZ 0.58955 10 4XX -0.00959 11 4YY -0.00959 12 4ZZ 0.02553 13 4XY 0.00000 14 4XZ 0.00103 15 4YZ 0.00103 16 2 H 1S 0.48780 17 2S 0.24490 Condensed to atoms (all electrons): 1 2 1 O 9.072832 0.194470 2 H 0.194470 0.538228 Mulliken charges: 1 1 O -1.267302 2 H 0.267302 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 O -1.000000 Electronic spatial extent (au): = 19.6872 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.7549 Tot= 1.7549 Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.9885 YY= -7.9885 ZZ= -6.4557 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.5109 YY= -0.5109 ZZ= 1.0219 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.1458 XYY= 0.0000 XXY= 0.0000 XXZ= -0.2566 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.2566 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -6.1981 YYYY= -6.1981 ZZZZ= -8.0624 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.0660 XXZZ= -2.5330 YYZZ= -2.5330 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.348116637501D+00 E-N=-1.924645745003D+02 KE= 7.536847393895D+01 Symmetry A1 KE= 6.706055105657D+01 Symmetry A2 KE= 1.375840632703D-51 Symmetry B1 KE= 4.153961441188D+00 Symmetry B2 KE= 4.153961441188D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -20.348799 29.152903 2 O -1.079592 2.581843 3 O -0.431459 1.795529 4 O -0.299320 2.076981 5 O -0.299320 2.076981 6 V 0.331483 1.000633 7 V 1.199962 2.219973 8 V 1.229523 2.579521 9 V 1.326881 3.773082 10 V 1.326881 3.773082 11 V 1.541029 3.615567 12 V 2.234265 2.799127 13 V 2.234265 2.799127 14 V 2.289690 2.800000 15 V 2.289692 2.800000 16 V 2.956795 3.690110 17 V 3.993421 9.570510 Total kinetic energy from orbitals= 7.536847393895D+01 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set /AOPNAO / : Write the AO to PNAO transformation to LFN 32 /AOPNHO / : Write the AO to PNHO transformation to LFN 34 /AOPNBO / : Write the AO to PNBO transformation to LFN 36 /DMNAO / : Write the NAO density matrix to LFN 82 /DMNHO / : Write the NHO density matrix to LFN 84 /DMNBO / : Write the NBO density matrix to LFN 86 /FNAO / : Write the NAO Fock matrix to LFN 92 /FNHO / : Write the NHO Fock matrix to LFN 94 /FNBO / : Write the NBO Fock matrix to LFN 96 /FILE / : Set to NBODATA Analyzing the SCF density Job title: Hydroxide Storage needed: 1019 in NPA, 1455 in NBO ( 33554404 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 O 1 S Cor( 1S) 1.99997 -20.19760 2 O 1 S Val( 2S) 1.86214 -1.02736 3 O 1 S Ryd( 3S) 0.00436 1.34740 4 O 1 S Ryd( 4S) 0.00000 3.87571 5 O 1 px Val( 2p) 1.99880 -0.29787 6 O 1 px Ryd( 3p) 0.00017 1.32677 7 O 1 py Val( 2p) 1.99880 -0.29787 8 O 1 py Ryd( 3p) 0.00017 1.32677 9 O 1 pz Val( 2p) 1.47668 -0.13197 10 O 1 pz Ryd( 3p) 0.00117 1.50448 11 O 1 dxy Ryd( 3d) 0.00000 2.28969 12 O 1 dxz Ryd( 3d) 0.00103 2.23293 13 O 1 dyz Ryd( 3d) 0.00103 2.23293 14 O 1 dx2y2 Ryd( 3d) 0.00000 2.28969 15 O 1 dz2 Ryd( 3d) 0.00476 2.71049 16 H 2 S Val( 1S) 0.64893 0.30199 17 H 2 S Ryd( 2S) 0.00200 1.00922 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- O 1 -1.34907 1.99997 7.33641 0.01270 9.34907 H 2 0.34907 0.00000 0.64893 0.00200 0.65093 ======================================================================= * Total * -1.00000 1.99997 7.98533 0.01470 10.00000 Natural Population -------------------------------------------------------- Core 1.99997 ( 99.9984% of 2) Valence 7.98533 ( 99.8167% of 8) Natural Minimal Basis 9.98530 ( 99.8530% of 10) Natural Rydberg Basis 0.01470 ( 0.1470% of 10) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- O 1 [core]2S( 1.86)2p( 5.47)3d( 0.01) H 2 1S( 0.65) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 9.99799 0.00201 1 1 0 3 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 1.99997 ( 99.998% of 2) Valence Lewis 7.99803 ( 99.975% of 8) ================== ============================ Total Lewis 9.99799 ( 99.980% of 10) ----------------------------------------------------- Valence non-Lewis 0.00000 ( 0.000% of 10) Rydberg non-Lewis 0.00201 ( 0.020% of 10) ================== ============================ Total non-Lewis 0.00201 ( 0.020% of 10) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) O 1 - H 2 ( 67.55%) 0.8219* O 1 s( 21.09%)p 3.73( 78.57%)d 0.02( 0.34%) 0.0000 -0.4562 0.0524 0.0000 0.0000 0.0000 0.0000 0.0000 0.8859 0.0293 0.0000 0.0000 0.0000 0.0000 -0.0587 ( 32.45%) 0.5696* H 2 s(100.00%) -1.0000 0.0000 2. (1.99997) CR ( 1) O 1 s(100.00%) 1.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3. (2.00000) LP ( 1) O 1 s( 0.00%)p 1.00( 99.95%)d 0.00( 0.05%) 0.0000 0.0000 0.0000 0.0000 0.9997 -0.0093 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0227 0.0000 0.0000 0.0000 4. (2.00000) LP ( 2) O 1 s( 0.00%)p 1.00( 99.95%)d 0.00( 0.05%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9997 -0.0093 0.0000 0.0000 0.0000 0.0000 -0.0227 0.0000 0.0000 5. (1.99803) LP ( 3) O 1 s( 79.16%)p 0.26( 20.84%)d 0.00( 0.01%) 0.0001 0.8895 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.4565 0.0023 0.0000 0.0000 0.0000 0.0000 -0.0072 6. (0.00000) RY*( 1) O 1 s( 99.70%)p 0.00( 0.30%)d 0.00( 0.00%) 7. (0.00000) RY*( 2) O 1 s(100.00%) 8. (0.00000) RY*( 3) O 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 9. (0.00000) RY*( 4) O 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 10. (0.00000) RY*( 5) O 1 s( 0.01%)p99.99( 99.99%)d 0.02( 0.00%) 11. (0.00000) RY*( 6) O 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 12. (0.00000) RY*( 7) O 1 s( 0.00%)p 1.00( 0.05%)d99.99( 99.95%) 13. (0.00000) RY*( 8) O 1 s( 0.00%)p 1.00( 0.05%)d99.99( 99.95%) 14. (0.00000) RY*( 9) O 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 15. (0.00001) RY*(10) O 1 s( 0.04%)p 7.39( 0.31%)d99.99( 99.65%) 16. (0.00200) RY*( 1) H 2 s(100.00%) 0.0000 1.0000 17. (0.00000) BD*( 1) O 1 - H 2 ( 32.45%) 0.5696* O 1 s( 21.09%)p 3.73( 78.57%)d 0.02( 0.34%) ( 67.55%) -0.8219* H 2 s(100.00%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 3. LP ( 1) O 1 -- -- 90.0 0.0 -- -- -- -- 4. LP ( 2) O 1 -- -- 90.0 90.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 5. LP ( 3) O 1 / 16. RY*( 1) H 2 1.99 1.93 0.055 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (HO) 1. BD ( 1) O 1 - H 2 2.00000 -0.74311 2. CR ( 1) O 1 1.99997 -20.19743 3. LP ( 1) O 1 2.00000 -0.29932 4. LP ( 2) O 1 2.00000 -0.29932 5. LP ( 3) O 1 1.99803 -0.91740 16(v) 6. RY*( 1) O 1 0.00000 1.34829 7. RY*( 2) O 1 0.00000 3.87571 8. RY*( 3) O 1 0.00000 1.32691 9. RY*( 4) O 1 0.00000 1.32691 10. RY*( 5) O 1 0.00000 1.50291 11. RY*( 6) O 1 0.00000 2.28969 12. RY*( 7) O 1 0.00000 2.23424 13. RY*( 8) O 1 0.00000 2.23424 14. RY*( 9) O 1 0.00000 2.28969 15. RY*( 10) O 1 0.00001 2.70959 16. RY*( 1) H 2 0.00200 1.00922 17. BD*( 1) O 1 - H 2 0.00000 0.80458 ------------------------------- Total Lewis 9.99799 ( 99.9799%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis 0.00201 ( 0.0201%) ------------------------------- Total unit 1 10.00000 (100.0000%) Charge unit 1 -1.00000 1\1\GINC-COMPUTE-0-6\SP\RMP2-FC\6-31G(d)\H1O1(1-)\ZDANOVSKAIA\21-Mar-2 019\0\\#N MP2/6-31G(d) SP GFINPUT POP=(FULL,NBORead) SCRF=(PCM,Solvent =Water) Geom=Connectivity\\Hydroxide\\-1,1\O\H,1,0.973621\\Version=EM6 4L-G09RevD.01\State=1-SG\HF=-75.4638366\MP2=-75.650337\RMSD=9.326e-10\ PG=C*V [C*(H1O1)]\\@ THE SOLUTION TO A PROBLEM CHANGES THE PROBLEM. -- JOHN PEERS PAUL DICKSON'S "THE OFFICIAL RULES" Job cpu time: 0 days 0 hours 0 minutes 1.6 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Thu Mar 21 20:16:53 2019.