Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/400897/Gau-4376.inp" -scrdir="/scratch/webmo-13362/400897/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 4377. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 24-Jul-2019 ****************************************** ---------------------------------------------------------------------- #N B3LYP/6-311+G(2d,p) SP GFINPUT POP=(FULL,NBO6Read) Geom=Connectivit y ---------------------------------------------------------------------- 1/38=1,57=2,163=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=3,28=1,40=2,113=1,114=1,124=2103/1,12; 99/5=1,9=1/99; ------- HHe(+1) ------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 H He 1 B1 Variables: B1 0.7971 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 2 0 0.000000 0.000000 0.797095 --------------------------------------------------------------------- Stoichiometry HHe(1+) Framework group C*V[C*(HHe)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.531397 2 2 0 0.000000 0.000000 0.265698 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 987.9709842 987.9709842 Standard basis: 6-311+G(2d,p) (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 3 1.00 0.000000000000 0.3386500000D+02 0.2549381454D-01 0.5094790000D+01 0.1903731086D+00 0.1158790000D+01 0.8521614860D+00 S 1 1.00 0.000000000000 0.3258400000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1027410000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.7500000000D+00 0.1000000000D+01 **** 2 0 S 3 1.00 0.000000000000 0.9812430000D+02 0.2874520250D-01 0.1476890000D+02 0.2080610181D+00 0.3318830000D+01 0.8376350728D+00 S 1 1.00 0.000000000000 0.8740470000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.2445640000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.7500000000D+00 0.1000000000D+01 **** There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 0 symmetry adapted cartesian basis functions of A2 symmetry. There are 2 symmetry adapted cartesian basis functions of B1 symmetry. There are 2 symmetry adapted cartesian basis functions of B2 symmetry. There are 8 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. 12 basis functions, 16 primitive gaussians, 12 cartesian basis functions 1 alpha electrons 1 beta electrons nuclear repulsion energy 1.3277644662 Hartrees. NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 12 RedAO= T EigKep= 8.61D-02 NBF= 8 0 2 2 NBsUse= 12 1.00D-06 EigRej= -1.00D+00 NBFU= 8 0 2 2 ExpMin= 1.03D-01 ExpMax= 9.81D+01 ExpMxC= 9.81D+01 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SG) Virtual (SG) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state of the initial guess is 1-SG. Keep R1 ints in memory in symmetry-blocked form, NReq=882636. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -2.98543832634 A.U. after 8 cycles NFock= 8 Conv=0.61D-08 -V/T= 2.0206 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SG) Virtual (SG) (SG) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -1.36120 Alpha virt. eigenvalues -- -0.43848 -0.10230 0.33864 0.49884 0.49884 Alpha virt. eigenvalues -- 0.99378 1.24035 1.24035 1.59233 2.27827 Alpha virt. eigenvalues -- 5.71481 Molecular Orbital Coefficients: 1 2 3 4 5 O V V V V Eigenvalues -- -1.36120 -0.43848 -0.10230 0.33864 0.49884 1 1 H 1S 0.13392 0.23452 -0.14261 0.11503 0.00000 2 2S 0.12393 0.74833 -1.14952 -0.17018 0.00000 3 3S -0.00786 0.48881 1.40467 -1.06137 0.00000 4 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.53079 6 4PZ 0.03187 -0.00374 -0.08533 -0.21951 0.00000 7 2 He 1S 0.26641 -0.13248 -0.03026 -0.16868 0.00000 8 2S 0.47234 -0.27999 -0.07795 -1.01267 0.00000 9 3S 0.23809 -0.64612 0.27388 2.17342 0.00000 10 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 0.00000 0.65062 12 4PZ -0.03194 -0.03220 0.00509 -0.14758 0.00000 6 7 8 9 10 V V V V V Eigenvalues -- 0.49884 0.99378 1.24035 1.24035 1.59233 1 1 H 1S 0.00000 -0.29590 0.00000 0.00000 -1.13911 2 2S 0.00000 1.36015 0.00000 0.00000 2.61030 3 3S 0.00000 -0.55171 0.00000 0.00000 -0.74295 4 4PX 0.53079 0.00000 0.97022 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.97022 0.00000 6 4PZ 0.00000 -0.33503 0.00000 0.00000 1.22142 7 2 He 1S 0.00000 0.03873 0.00000 0.00000 -0.01055 8 2S 0.00000 0.17957 0.00000 0.00000 -0.94002 9 3S 0.00000 -0.45095 0.00000 0.00000 -0.47692 10 4PX 0.65062 0.00000 -0.89429 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 -0.89429 0.00000 12 4PZ 0.00000 0.91392 0.00000 0.00000 0.64535 11 12 V V Eigenvalues -- 2.27827 5.71481 1 1 H 1S 1.05216 -0.28181 2 2S 1.02378 -0.71697 3 3S 0.28761 0.34943 4 4PX 0.00000 0.00000 5 4PY 0.00000 0.00000 6 4PZ 1.66449 -0.72151 7 2 He 1S -0.16041 -1.49776 8 2S -0.73359 2.35614 9 3S -1.29013 -0.58747 10 4PX 0.00000 0.00000 11 4PY 0.00000 0.00000 12 4PZ 1.75863 -0.61997 Density Matrix: 1 2 3 4 5 1 1 H 1S 0.03587 2 2S 0.03319 0.03072 3 3S -0.00210 -0.00195 0.00012 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00854 0.00790 -0.00050 0.00000 0.00000 7 2 He 1S 0.07135 0.06603 -0.00419 0.00000 0.00000 8 2S 0.12651 0.11708 -0.00742 0.00000 0.00000 9 3S 0.06377 0.05901 -0.00374 0.00000 0.00000 10 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 12 4PZ -0.00855 -0.00792 0.00050 0.00000 0.00000 6 7 8 9 10 6 4PZ 0.00203 7 2 He 1S 0.01698 0.14194 8 2S 0.03011 0.25167 0.44621 9 3S 0.01517 0.12686 0.22492 0.11337 10 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 12 4PZ -0.00204 -0.01702 -0.03017 -0.01521 0.00000 11 12 11 4PY 0.00000 12 4PZ 0.00000 0.00204 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.03587 2 2S 0.02345 0.03072 3 3S -0.00079 -0.00154 0.00012 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000 7 2 He 1S 0.00649 0.01324 -0.00061 0.00000 0.00000 8 2S 0.03701 0.05732 -0.00290 0.00000 0.00000 9 3S 0.02471 0.04233 -0.00277 0.00000 0.00000 10 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 12 4PZ 0.00444 0.00329 -0.00007 0.00000 0.00000 6 7 8 9 10 6 4PZ 0.00203 7 2 He 1S 0.00566 0.14194 8 2S 0.01684 0.17125 0.44621 9 3S 0.00512 0.04168 0.16904 0.11337 10 4PX 0.00000 0.00000 0.00000 0.00000 0.00000 11 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 12 4PZ 0.00061 0.00000 0.00000 0.00000 0.00000 11 12 11 4PY 0.00000 12 4PZ 0.00000 0.00204 Gross orbital populations: 1 1 1 H 1S 0.13118 2 2S 0.16881 3 3S -0.00854 4 4PX 0.00000 5 4PY 0.00000 6 4PZ 0.03027 7 2 He 1S 0.37967 8 2S 0.89479 9 3S 0.39349 10 4PX 0.00000 11 4PY 0.00000 12 4PZ 0.01032 Condensed to atoms (all electrons): 1 2 1 H 0.110992 0.210737 2 He 0.210737 1.467533 Mulliken charges: 1 1 H 0.678271 2 He 0.321729 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 2 He 1.000000 Electronic spatial extent (au): = 2.4323 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.3035 Tot= 1.3035 Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.8958 YY= -0.8958 ZZ= 0.5546 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.4835 YY= -0.4835 ZZ= 0.9669 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -0.8681 XYY= 0.0000 XXY= 0.0000 XXZ= -0.0939 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.0939 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -0.3848 YYYY= -0.3848 ZZZZ= -0.3110 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.1283 XXZZ= -0.1798 YYZZ= -0.1798 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.327764466193D+00 E-N=-8.198614551732D+00 KE= 2.925136157545D+00 Symmetry A1 KE= 2.925136157545D+00 Symmetry A2 KE= 0.000000000000D+00 Symmetry B1 KE= 0.000000000000D+00 Symmetry B2 KE= 0.000000000000D+00 Orbital energies and kinetic energies (alpha): 1 2 1 O -1.361199 1.462568 2 V -0.438481 0.983589 3 V -0.102302 0.555104 4 V 0.338643 1.626785 5 V 0.498837 1.686777 6 V 0.498837 1.686777 7 V 0.993784 2.270742 8 V 1.240350 2.347901 9 V 1.240350 2.347901 10 V 1.592330 3.165512 11 V 2.278265 4.033177 12 V 5.714806 11.040647 Total kinetic energy from orbitals= 2.925136157545D+00 Running external command "gaunbo6 R" input file "/scratch/webmo-13362/400897/Gau-4377.EIn" output file "/scratch/webmo-13362/400897/Gau-4377.EOu" message file "/scratch/webmo-13362/400897/Gau-4377.EMs" fchk file "/scratch/webmo-13362/400897/Gau-4377.EFC" mat. el file "/scratch/webmo-13362/400897/Gau-4377.EUF" Writing Wrt12E file "/scratch/webmo-13362/400897/Gau-4377.EUF" Gaussian matrix elements Version 1 NLab= 7 Len12L=8 Len4L=8 Write GAUSSIAN SCALARS from file 501 offset 0 to matrix element file. Write OVERLAP from file 514 offset 0 to matrix element file. Write CORE HAMILTONIAN ALPHA from file 515 offset 0 to matrix element file. Write CORE HAMILTONIAN BETA from file 515 offset 78 to matrix element file. Write KINETIC ENERGY from file 516 offset 0 to matrix element file. Write ORTHOGONAL BASIS from file 685 offset 0 to matrix element file. Write DIPOLE INTEGRALS from file 518 offset 0 to matrix element file. Array DIP VEL INTEGRALS on file 572 does not exist. Array R X DEL INTEGRALS on file 572 does not exist. Write ALPHA ORBITAL ENERGIES from file 0 offset 0 to matrix element file. Write ALPHA MO COEFFICIENTS from file 10524 offset 0 to matrix element file. Write ALPHA DENSITY MATRIX from file 0 offset 0 to matrix element file. Write ALPHA SCF DENSITY MATRIX from file 10528 offset 0 to matrix element file. Write ALPHA FOCK MATRIX from file 10536 offset 0 to matrix element file. No 2e integrals to process. Perform NBO analysis... *********************************** NBO 6.0 *********************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ***************************** UW-Madison (100035) ***************************** (c) Copyright 1996-2017 Board of Regents of the University of Wisconsin System on behalf of the Theoretical Chemistry Institute. All rights reserved. Cite this program as: NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, and F. Weinhold (Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013); http://nbo6.chem.wisc.edu/ /NRT / : Natural Resonance Theory Analysis /AOPNAO / : Write the AO to PNAO transformation to lfn32 /AOPNHO / : Write the AO to PNHO transformation to lfn34 /AOPNBO / : Write the AO to PNBO transformation to lfn36 /DMNAO / : Write the NAO density matrix to lfn82 /DMNHO / : Write the NHO density matrix to lfn84 /DMNBO / : Write the NBO density matrix to lfn86 /FNAO / : Write the NAO Fock matrix to lfn92 /FNHO / : Write the NHO Fock matrix to lfn94 /FNBO / : Write the NBO Fock matrix to lfn96 /FILE / : Set to NBODATA Filename set to NBODATA Job title: HHe(+1) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ------------------------------------------------------- 1 H 1 s Val( 1s) 0.25310 -0.45761 2 H 1 s Ryd( 3s) 0.00000 0.75412 3 H 1 s Ryd( 2s) 0.00000 0.81000 4 H 1 px Ryd( 2p) 0.00000 1.01703 5 H 1 py Ryd( 2p) 0.00000 1.01703 6 H 1 pz Ryd( 2p) 0.00036 2.03213 7 He 2 s Val( 1s) 1.74134 -1.22777 8 He 2 s Ryd( 3s) 0.00000 1.14599 9 He 2 s Ryd( 2s) 0.00000 4.67710 10 He 2 px Ryd( 2p) 0.00000 0.72216 11 He 2 py Ryd( 2p) 0.00000 0.72216 12 He 2 pz Ryd( 2p) 0.00519 1.28189 Population inversion found on atom H 1 Population inversion found on atom He 2 Summary of Natural Population Analysis: Natural Population Natural --------------------------------------------- Atom No Charge Core Valence Rydberg Total -------------------------------------------------------------------- H 1 0.74654 0.00000 0.25310 0.00036 0.25346 He 2 0.25346 0.00000 1.74134 0.00519 1.74654 ==================================================================== * Total * 1.00000 0.00000 1.99445 0.00555 2.00000 Natural Population --------------------------------------------------------- Valence 1.99445 ( 99.7225% of 2) Natural Minimal Basis 1.99445 ( 99.7225% of 2) Natural Rydberg Basis 0.00555 ( 0.2775% of 2) --------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- H 1 1s( 0.25) He 2 1s( 1.74)2p( 0.01) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Max Occ ------------------- ----------------- occ occ Cycle Ctr Thresh Lewis non-Lewis CR BD nC LP (L) (NL) ============================================================================ 1 2 1.90 2.00000 0.00000 0 1 0 0 0 0 ---------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals ------------------------------------------------------- Valence Lewis 2.00000 (100.000% of 2) ================== ============================= Total Lewis 2.00000 (100.000% of 2) ----------------------------------------------------- Valence non-Lewis 0.00000 ( 0.000% of 2) Rydberg non-Lewis 0.00000 ( 0.000% of 2) ================== ============================= Total non-Lewis 0.00000 ( 0.000% of 2) ------------------------------------------------------- (Occupancy) Bond orbital / Coefficients / Hybrids ------------------ Lewis ------------------------------------------------------ 1. (2.00000) BD ( 1) H 1-He 2 ( 12.67%) 0.3560* H 1 s( 99.86%)p 0.00( 0.14%) 0.9993 0.0000 0.0000 0.0000 0.0000 0.0376 ( 87.33%) 0.9345*He 2 s( 99.70%)p 0.00( 0.30%) 0.9985 0.0000 0.0000 0.0000 0.0000 -0.0545 ---------------- non-Lewis ---------------------------------------------------- 2. (0.00000) BD*( 1) H 1-He 2 ( 87.33%) 0.9345* H 1 s( 99.86%)p 0.00( 0.14%) ( 12.67%) -0.3560*He 2 s( 99.70%)p 0.00( 0.30%) 3. (0.00000) RY ( 1) H 1 s(100.00%) 4. (0.00000) RY ( 2) H 1 s( 59.36%)p 0.68( 40.64%) 5. (0.00000) RY ( 3) H 1 s( 0.00%)p 1.00(100.00%) 6. (0.00000) RY ( 4) H 1 s( 0.00%)p 1.00(100.00%) 7. (0.00000) RY ( 5) H 1 s( 40.78%)p 1.45( 59.22%) 8. (0.00000) RY ( 1)He 2 s(100.00%) 9. (0.00000) RY ( 2)He 2 s(100.00%) 10. (0.00000) RY ( 3)He 2 s( 0.00%)p 1.00(100.00%) 11. (0.00000) RY ( 4)He 2 s( 0.00%)p 1.00(100.00%) 12. (0.00000) RY ( 5)He 2 s( 0.30%)p99.99( 99.70%) NHO DIRECTIONALITY AND BOND BENDING (deviation from line of nuclear centers at the position of maximum hybrid amplitude) [Thresholds for printing: angular deviation > 1.0 degree] p- or d-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev =============================================================================== None exceeding thresholds SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS Threshold for printing: 0.50 kcal/mol E(2) E(NL)-E(L) F(L,NL) Donor (L) NBO Acceptor (NL) NBO kcal/mol a.u. a.u. =============================================================================== within unit 1 None above threshold NATURAL BOND ORBITALS (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) =============================================================================== Molecular unit 1 (HHe) ------ Lewis -------------------------------------- 1. BD ( 1) H 1-He 2 2.00000 -1.36120 ------ non-Lewis ---------------------------------- 2. BD*( 1) H 1-He 2 0.00000 -0.31414 3. RY ( 1) H 1 0.00000 0.75412 4. RY ( 2) H 1 0.00000 1.19837 5. RY ( 3) H 1 0.00000 1.01703 6. RY ( 4) H 1 0.00000 1.01703 7. RY ( 5) H 1 0.00000 1.63298 8. RY ( 1)He 2 0.00000 3.85490 9. RY ( 2)He 2 0.00000 1.96820 10. RY ( 3)He 2 0.00000 0.72216 11. RY ( 4)He 2 0.00000 0.72216 12. RY ( 5)He 2 0.00000 1.28262 ------------------------------- Total Lewis 2.00000 (100.0000%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis 0.00000 ( 0.0000%) ------------------------------- Total unit 1 2.00000 (100.0000%) Charge unit 1 1.00000 $CHOOSE BOND S 1 2 END $END NATURAL RESONANCE THEORY ANALYSIS: Maximum reference structures : 20 Maximum resonance structures : 300 Memory requirements : 478323 words of 99987512 available 1 candidate reference structure(s) calculated by SR LEWIS SELECT: CHOOSE has failed to calculate an acceptable set of Lewis orbitals for any of the proposed reference structures Maximum scratch memory used by NBO was 678736 words (5.18 MB) Maximum scratch memory used by G09NBO was 8866 words (0.07 MB) Read Unf file /scratch/webmo-13362/400897/Gau-4377.EUF: Label Gaussian matrix elements IVers= 1 NLab= 2 Version=EM64L-G09RevD.01 Title HHe(+1) NAtoms= 2 NBasis= 12 NBsUse= 12 ICharg= 1 Multip= 1 NE= 2 Len12L=8 Len4L=8 Label GAUSSIAN SCALARS NI= 1 NR= 1 NTot= 1 LenBuf= 2000 N= 1000 1 1 1 1 Recovered energy= -2.98543832634 dipole= 0.000000000000 0.000000000000 0.000000000000 1\1\GINC-COMPUTE-0-4\SP\RB3LYP\6-311+G(2d,p)\H1He1(1+)\ZDANOVSKAIA\24- Jul-2019\0\\#N B3LYP/6-311+G(2d,p) SP GFINPUT POP=(FULL,NBO6Read) Geom =Connectivity\\HHe(+1)\\1,1\H\He,1,0.797095\\Version=EM64L-G09RevD.01\ State=1-SG\HF=-2.9854383\RMSD=6.067e-09\Dipole=0.,0.,-0.5128509\Quadru pole=-0.359443,-0.359443,0.7188859,0.,0.,0.\PG=C*V [C*(H1He1)]\\@ Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers inthe future may have only 1,000 vacuum tubes and weigh only 1 1/2 tons. ---Popular Mechanics, March 1949 Job cpu time: 0 days 0 hours 0 minutes 0.8 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Wed Jul 24 14:43:50 2019.