Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567407/Gau-6914.inp" -scrdir="/scratch/webmo-5066/567407/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 6915. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ---------------------------- F Grignard Product (C7H5O2F) ---------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 C 6 B6 1 A5 2 D4 0 O 7 B7 6 A6 1 D5 0 H 8 B8 7 A7 6 D6 0 O 7 B9 6 A8 1 D7 0 H 5 B10 6 A9 1 D8 0 H 4 B11 5 A10 6 D9 0 F 3 B12 4 A11 5 D10 0 H 2 B13 1 A12 6 D11 0 H 1 B14 2 A13 3 D12 0 Variables: B1 1.38262 B2 1.38339 B3 1.38219 B4 1.38449 B5 1.39157 B6 1.48316 B7 1.34692 B8 0.96606 B9 1.20127 B10 1.08016 B11 1.08029 B12 1.33721 B13 1.08022 B14 1.08107 A1 118.30212 A2 122.69667 A3 118.41042 A4 120.28744 A5 117.88499 A6 113.01378 A7 106.62627 A8 124.76241 A9 119.60553 A10 122.05172 A11 118.6677 A12 122.1723 A13 121.01285 D1 0. D2 0. D3 0. D4 180. D5 180. D6 180. D7 0. D8 180. D9 180. D10 180. D11 180. D12 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.382616 3 6 0 1.218020 0.000000 2.038510 4 6 0 2.426896 0.000000 1.368385 5 6 0 2.412620 0.000000 -0.016029 6 6 0 1.201629 0.000000 -0.701822 7 6 0 1.139458 0.000000 -2.183675 8 8 0 2.356012 0.000000 -2.761760 9 1 0 2.208386 0.000000 -3.716472 10 8 0 0.124746 0.000000 -2.826636 11 1 0 3.339744 0.000000 -0.570270 12 1 0 3.348377 0.000000 1.932206 13 9 0 1.225803 0.000000 3.375702 14 1 0 -0.914349 0.000000 1.957795 15 1 0 -0.926531 0.000000 -0.556999 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.382616 0.000000 3 C 2.374678 1.383390 0.000000 4 C 2.786091 2.426938 1.382190 0.000000 5 C 2.412674 2.788717 2.376594 1.384488 0.000000 6 C 1.391570 2.405991 2.740381 2.405626 1.391694 7 C 2.463087 3.743901 4.222916 3.778178 2.513888 8 O 3.630167 4.767247 4.933317 4.130753 2.746314 9 H 4.323094 5.556768 5.839576 5.089551 3.706075 10 O 2.829388 4.211100 4.986471 4.785196 3.624070 11 H 3.388082 3.868805 3.362655 2.142820 1.080158 12 H 3.865883 3.393181 2.133008 1.080288 2.161310 13 F 3.591372 2.339868 1.337214 2.339218 3.593379 14 H 2.160786 1.080215 2.133896 3.392834 3.868424 15 H 1.081067 2.149549 3.366862 3.866856 3.382688 6 7 8 9 10 6 C 0.000000 7 C 1.483156 0.000000 8 O 2.361344 1.346918 0.000000 9 H 3.178314 1.868710 0.966059 0.000000 10 O 2.382124 1.201266 2.232209 2.265693 0.000000 11 H 2.142158 2.728431 2.402157 3.343436 3.927773 12 H 3.398033 4.671167 4.797719 5.762564 5.747902 13 F 4.077595 5.560047 6.240657 7.159916 6.299311 14 H 3.398665 4.622758 5.741904 6.476788 4.895968 15 H 2.133082 2.629521 3.954246 4.450840 2.501287 11 12 13 14 15 11 H 0.000000 12 H 2.502491 0.000000 13 F 4.476543 2.566905 0.000000 14 H 4.948577 4.262803 2.567238 0.000000 15 H 4.266295 4.946815 4.483154 2.514823 0.000000 Stoichiometry C7H5FO2 Framework group CS[SG(C7H5FO2)] Deg. of freedom 27 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.227951 -0.007253 0.000000 2 6 0 -1.281588 -1.388828 0.000000 3 6 0 -0.089930 -2.091480 0.000000 4 6 0 1.144033 -1.468757 0.000000 5 6 0 1.183475 -0.084831 0.000000 6 6 0 0.000000 0.647425 0.000000 7 6 0 -0.004638 2.130574 0.000000 8 8 0 1.233427 2.661029 0.000000 9 1 0 1.122949 3.620750 0.000000 10 8 0 -0.993643 2.812416 0.000000 11 1 0 2.131402 0.433026 0.000000 12 1 0 2.042948 -2.067901 0.000000 13 9 0 -0.134027 -3.427967 0.000000 14 1 0 -2.217562 -1.928103 0.000000 15 1 0 -2.132176 0.585270 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.9030973 0.7813434 0.6510189 Standard basis: CC-pVTZ (5D, 7F) There are 295 symmetry adapted cartesian basis functions of A' symmetry. There are 130 symmetry adapted cartesian basis functions of A" symmetry. There are 250 symmetry adapted basis functions of A' symmetry. There are 120 symmetry adapted basis functions of A" symmetry. 370 basis functions, 605 primitive gaussians, 425 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 488.4685318149 Hartrees. NAtoms= 15 NActive= 15 NUniq= 15 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 370 RedAO= T EigKep= 5.34D-05 NBF= 250 120 NBsUse= 370 1.00D-06 EigRej= -1.00D+00 NBFU= 250 120 ExpMin= 1.03D-01 ExpMax= 1.95D+04 ExpMxC= 6.65D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") Virtual (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -520.064956113 A.U. after 15 cycles NFock= 15 Conv=0.58D-08 -V/T= 2.0052 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 370 NBasis= 370 NAE= 36 NBE= 36 NFC= 0 NFV= 0 NROrb= 370 NOA= 36 NOB= 36 NVA= 334 NVB= 334 **** Warning!!: The largest alpha MO coefficient is 0.34533755D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 15 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 4.01D-13 3.33D-08 XBig12= 7.44D+00 6.67D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 4.01D-13 3.33D-08 XBig12= 6.03D-02 9.46D-02. 3 vectors produced by pass 2 Test12= 4.01D-13 3.33D-08 XBig12= 9.64D-04 1.35D-02. 3 vectors produced by pass 3 Test12= 4.01D-13 3.33D-08 XBig12= 1.02D-05 1.12D-03. 3 vectors produced by pass 4 Test12= 4.01D-13 3.33D-08 XBig12= 1.07D-07 1.28D-04. 3 vectors produced by pass 5 Test12= 4.01D-13 3.33D-08 XBig12= 1.30D-09 9.14D-06. 3 vectors produced by pass 6 Test12= 4.01D-13 3.33D-08 XBig12= 1.19D-11 8.80D-07. 3 vectors produced by pass 7 Test12= 4.01D-13 3.33D-08 XBig12= 1.16D-13 8.17D-08. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 32.4847 Anisotropy = 225.9092 XX= -67.7205 YX= 39.9814 ZX= 0.0000 XY= 39.1574 YY= -17.9162 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 183.0909 Eigenvalues: -89.5714 3.9348 183.0909 2 C Isotropic = 54.3505 Anisotropy = 176.0711 XX= -24.7496 YX= -31.3611 ZX= 0.0000 XY= -36.5995 YY= 16.0699 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 171.7312 Eigenvalues: -43.9785 35.2987 171.7312 3 C Isotropic = -0.6926 Anisotropy = 130.2962 XX= 24.1274 YX= -4.1276 ZX= 0.0000 XY= -4.4493 YY= -112.3768 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 86.1715 Eigenvalues: -112.5114 24.2620 86.1715 4 C Isotropic = 55.5733 Anisotropy = 175.3311 XX= -17.2155 YX= 34.2622 ZX= 0.0000 XY= 39.2337 YY= 11.4747 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 172.4607 Eigenvalues: -42.3190 36.5782 172.4607 5 C Isotropic = 34.4041 Anisotropy = 216.8035 XX= -62.4282 YX= -30.8860 ZX= 0.0000 XY= -38.8328 YY= -13.2993 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 178.9397 Eigenvalues: -80.5087 4.7812 178.9397 6 C Isotropic = 44.8439 Anisotropy = 181.0018 XX= 31.0093 YX= -2.1412 ZX= 0.0000 XY= 1.1959 YY= -61.9894 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 165.5117 Eigenvalues: -61.9918 31.0117 165.5117 7 C Isotropic = 7.8231 Anisotropy = 100.9158 XX= -10.0618 YX= -88.5370 ZX= 0.0000 XY= -58.9710 YY= -41.5691 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 75.1003 Eigenvalues: -101.2332 49.6023 75.1003 8 O Isotropic = 131.4928 Anisotropy = 197.5509 XX= 194.7258 YX= 177.2291 ZX= 0.0000 XY= 72.7659 YY= 34.9923 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 164.7603 Eigenvalues: -33.4753 164.7603 263.1934 9 H Isotropic = 25.3541 Anisotropy = 11.5237 XX= 22.0757 YX= 5.2217 ZX= 0.0000 XY= 0.4032 YY= 32.3149 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.6717 Eigenvalues: 21.3540 21.6717 33.0366 10 O Isotropic = -111.8986 Anisotropy = 603.5016 XX= -360.0030 YX= 19.6793 ZX= 0.0000 XY= -4.8462 YY= -266.1287 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 290.4358 Eigenvalues: -360.5853 -265.5463 290.4358 11 H Isotropic = 22.8132 Anisotropy = 8.6885 XX= 21.8398 YX= -2.2099 ZX= 0.0000 XY= -3.0470 YY= 27.5844 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.0154 Eigenvalues: 19.0154 20.8187 28.6055 12 H Isotropic = 24.0712 Anisotropy = 5.9704 XX= 24.8659 YX= 2.2497 ZX= 0.0000 XY= 2.3517 YY= 26.3898 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 20.9579 Eigenvalues: 20.9579 23.2042 28.0515 13 F Isotropic = 281.1491 Anisotropy = 132.8053 XX= 186.3433 YX= 3.7900 ZX= 0.0000 XY= 3.1507 YY= 287.4180 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 369.6860 Eigenvalues: 186.2243 287.5370 369.6860 14 H Isotropic = 24.0298 Anisotropy = 5.9301 XX= 24.5113 YX= -2.1883 ZX= 0.0000 XY= -2.2134 YY= 26.5882 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 20.9900 Eigenvalues: 20.9900 23.1162 27.9832 15 H Isotropic = 22.6223 Anisotropy = 8.1125 XX= 22.1558 YX= 2.7855 ZX= 0.0000 XY= 3.1101 YY= 26.5515 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.1596 Eigenvalues: 19.1596 20.6767 28.0306 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A") Virtual (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A") (A") (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -25.26813 -19.67862 -19.62155 -10.68577 -10.64799 Alpha occ. eigenvalues -- -10.57213 -10.57029 -10.56947 -10.56467 -10.56423 Alpha occ. eigenvalues -- -1.38963 -1.24779 -1.15047 -0.99448 -0.88526 Alpha occ. eigenvalues -- -0.87661 -0.76686 -0.73358 -0.69369 -0.64696 Alpha occ. eigenvalues -- -0.61655 -0.59609 -0.58443 -0.57811 -0.54892 Alpha occ. eigenvalues -- -0.54059 -0.51927 -0.50589 -0.49681 -0.46719 Alpha occ. eigenvalues -- -0.45482 -0.42471 -0.40873 -0.36858 -0.33649 Alpha occ. eigenvalues -- -0.32220 Alpha virt. eigenvalues -- -0.02238 0.00046 0.06392 0.08265 0.09400 Alpha virt. eigenvalues -- 0.09643 0.12091 0.14509 0.16510 0.20000 Alpha virt. eigenvalues -- 0.21235 0.24505 0.25380 0.27046 0.27323 Alpha virt. eigenvalues -- 0.28957 0.31174 0.33102 0.33725 0.34133 Alpha virt. eigenvalues -- 0.35223 0.36284 0.37958 0.38517 0.40013 Alpha virt. eigenvalues -- 0.40392 0.40793 0.41676 0.42605 0.42997 Alpha virt. eigenvalues -- 0.43958 0.45292 0.47518 0.49422 0.50066 Alpha virt. eigenvalues -- 0.50881 0.50958 0.52280 0.54638 0.54934 Alpha virt. eigenvalues -- 0.57821 0.59159 0.61419 0.62859 0.62901 Alpha virt. eigenvalues -- 0.64185 0.64951 0.65933 0.66939 0.69638 Alpha virt. eigenvalues -- 0.69926 0.72347 0.73906 0.75683 0.76692 Alpha virt. eigenvalues -- 0.77301 0.78632 0.80756 0.82131 0.82324 Alpha virt. eigenvalues -- 0.83714 0.85757 0.86889 0.87750 0.89525 Alpha virt. eigenvalues -- 0.89681 0.92317 0.94429 0.96161 0.98227 Alpha virt. eigenvalues -- 1.00535 1.02760 1.03770 1.04791 1.06376 Alpha virt. eigenvalues -- 1.08730 1.10266 1.11445 1.12912 1.13898 Alpha virt. eigenvalues -- 1.16525 1.16924 1.21795 1.24915 1.25597 Alpha virt. eigenvalues -- 1.25742 1.28780 1.30098 1.32364 1.32627 Alpha virt. eigenvalues -- 1.32792 1.34985 1.36827 1.37214 1.39331 Alpha virt. eigenvalues -- 1.41267 1.43132 1.44403 1.49823 1.51200 Alpha virt. eigenvalues -- 1.51728 1.55169 1.57748 1.57799 1.61464 Alpha virt. eigenvalues -- 1.64586 1.69066 1.70730 1.73901 1.76659 Alpha virt. eigenvalues -- 1.77989 1.79699 1.89046 1.91266 1.94650 Alpha virt. eigenvalues -- 1.96025 1.97667 2.01601 2.03259 2.06210 Alpha virt. eigenvalues -- 2.07898 2.08669 2.12036 2.12633 2.13683 Alpha virt. eigenvalues -- 2.14047 2.16565 2.17759 2.22718 2.27171 Alpha virt. eigenvalues -- 2.30485 2.31788 2.32385 2.34174 2.35447 Alpha virt. eigenvalues -- 2.37963 2.39386 2.41371 2.43311 2.44697 Alpha virt. eigenvalues -- 2.48118 2.48248 2.49906 2.52358 2.54761 Alpha virt. eigenvalues -- 2.57007 2.58778 2.60471 2.62779 2.65761 Alpha virt. eigenvalues -- 2.65918 2.68007 2.70108 2.71585 2.73372 Alpha virt. eigenvalues -- 2.74230 2.75578 2.79876 2.79916 2.80693 Alpha virt. eigenvalues -- 2.83149 2.84887 2.87449 2.87550 2.89050 Alpha virt. eigenvalues -- 2.90651 2.92840 2.93395 2.94155 2.96941 Alpha virt. eigenvalues -- 2.97773 3.01657 3.02974 3.05438 3.06448 Alpha virt. eigenvalues -- 3.07091 3.07335 3.07507 3.08290 3.10734 Alpha virt. eigenvalues -- 3.11042 3.11748 3.13748 3.14585 3.15906 Alpha virt. eigenvalues -- 3.18098 3.18533 3.22437 3.23958 3.24989 Alpha virt. eigenvalues -- 3.24990 3.27345 3.28409 3.30525 3.32236 Alpha virt. eigenvalues -- 3.32999 3.33826 3.34655 3.36669 3.41245 Alpha virt. eigenvalues -- 3.41420 3.42879 3.43755 3.44596 3.51452 Alpha virt. eigenvalues -- 3.52006 3.54806 3.56653 3.58032 3.60617 Alpha virt. eigenvalues -- 3.62691 3.66586 3.66630 3.67328 3.68910 Alpha virt. eigenvalues -- 3.72637 3.73252 3.76252 3.77862 3.79087 Alpha virt. eigenvalues -- 3.79761 3.81645 3.82205 3.83625 3.84009 Alpha virt. eigenvalues -- 3.84047 3.88793 3.88981 3.90691 3.97034 Alpha virt. eigenvalues -- 4.00740 4.02348 4.03716 4.03943 4.08676 Alpha virt. eigenvalues -- 4.09942 4.12728 4.13807 4.14551 4.16074 Alpha virt. eigenvalues -- 4.16894 4.18646 4.19193 4.24420 4.24676 Alpha virt. eigenvalues -- 4.27487 4.29896 4.31174 4.32335 4.34039 Alpha virt. eigenvalues -- 4.34082 4.37853 4.42936 4.47525 4.51838 Alpha virt. eigenvalues -- 4.54330 4.59907 4.64399 4.66630 4.68932 Alpha virt. eigenvalues -- 4.70970 4.72242 4.72435 4.75270 4.85405 Alpha virt. eigenvalues -- 4.87568 4.88365 4.94399 4.96750 4.98657 Alpha virt. eigenvalues -- 4.99274 5.03242 5.07164 5.11900 5.17696 Alpha virt. eigenvalues -- 5.20641 5.22628 5.24824 5.26764 5.30728 Alpha virt. eigenvalues -- 5.33875 5.40453 5.50455 5.53595 5.54049 Alpha virt. eigenvalues -- 5.60155 5.73247 5.76938 5.82752 5.83839 Alpha virt. eigenvalues -- 5.89801 5.94167 6.07831 6.15390 6.16527 Alpha virt. eigenvalues -- 6.26008 6.28182 6.33374 6.42758 6.44046 Alpha virt. eigenvalues -- 6.46453 6.56761 6.63902 6.70288 6.74129 Alpha virt. eigenvalues -- 6.85330 6.85643 6.90310 6.92869 6.98559 Alpha virt. eigenvalues -- 7.01732 7.03243 7.10356 7.17382 7.27513 Alpha virt. eigenvalues -- 7.32107 7.39630 7.44430 7.70671 8.35510 Alpha virt. eigenvalues -- 8.37126 8.43720 8.77961 8.99269 9.15806 Alpha virt. eigenvalues -- 10.63458 11.69327 12.13019 12.35751 12.67322 Alpha virt. eigenvalues -- 12.77411 13.38743 13.70629 15.50477 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.218224 0.262855 0.010926 -0.021416 -0.073872 0.318973 2 C 0.262855 5.317598 0.390772 -0.050377 -0.030489 -0.024933 3 C 0.010926 0.390772 4.687546 0.392754 0.012587 -0.064629 4 C -0.021416 -0.050377 0.392754 5.319519 0.254671 -0.028489 5 C -0.073872 -0.030489 0.012587 0.254671 5.201438 0.310292 6 C 0.318973 -0.024933 -0.064629 -0.028489 0.310292 5.751237 7 C -0.059333 0.008572 -0.002315 0.004917 -0.001497 0.193572 8 O 0.006587 -0.000088 0.000084 0.001353 0.028622 -0.154657 9 H -0.000949 -0.000002 0.000005 -0.000014 -0.003445 0.029222 10 O 0.023494 0.002664 -0.000040 -0.000082 0.004673 -0.165330 11 H 0.005183 -0.001541 0.004788 -0.034945 0.418684 -0.048251 12 H -0.003874 0.011972 -0.057931 0.430630 -0.049529 0.009936 13 F 0.011972 -0.077256 0.372782 -0.077234 0.012133 -0.002376 14 H -0.051422 0.432278 -0.058153 0.011926 -0.003856 0.009873 15 H 0.420272 -0.030025 0.004881 -0.001092 0.004407 -0.057606 7 8 9 10 11 12 1 C -0.059333 0.006587 -0.000949 0.023494 0.005183 -0.003874 2 C 0.008572 -0.000088 -0.000002 0.002664 -0.001541 0.011972 3 C -0.002315 0.000084 0.000005 -0.000040 0.004788 -0.057931 4 C 0.004917 0.001353 -0.000014 -0.000082 -0.034945 0.430630 5 C -0.001497 0.028622 -0.003445 0.004673 0.418684 -0.049529 6 C 0.193572 -0.154657 0.029222 -0.165330 -0.048251 0.009936 7 C 4.307484 0.462001 -0.042193 0.789985 -0.003428 0.000047 8 O 0.462001 7.752669 0.307071 -0.099990 0.015897 -0.000056 9 H -0.042193 0.307071 0.430000 0.010614 -0.000771 -0.000001 10 O 0.789985 -0.099990 0.010614 7.768574 0.000285 0.000002 11 H -0.003428 0.015897 -0.000771 0.000285 0.508868 -0.008232 12 H 0.000047 -0.000056 -0.000001 0.000002 -0.008232 0.534812 13 F -0.000006 0.000000 0.000000 0.000000 -0.000006 0.000939 14 H -0.000026 0.000001 -0.000001 -0.000027 0.000035 -0.000119 15 H -0.006309 0.000852 -0.000138 0.016654 -0.000301 0.000040 13 14 15 1 C 0.011972 -0.051422 0.420272 2 C -0.077256 0.432278 -0.030025 3 C 0.372782 -0.058153 0.004881 4 C -0.077234 0.011926 -0.001092 5 C 0.012133 -0.003856 0.004407 6 C -0.002376 0.009873 -0.057606 7 C -0.000006 -0.000026 -0.006309 8 O 0.000000 0.000001 0.000852 9 H 0.000000 -0.000001 -0.000138 10 O 0.000000 -0.000027 0.016654 11 H -0.000006 0.000035 -0.000301 12 H 0.000939 -0.000119 0.000040 13 F 8.923464 0.000968 -0.000001 14 H 0.000968 0.533593 -0.007682 15 H -0.000001 -0.007682 0.508235 Mulliken charges: 1 1 C -0.067620 2 C -0.212001 3 C 0.305943 4 C -0.202122 5 C -0.084817 6 C -0.076834 7 C 0.348527 8 O -0.320345 9 H 0.270601 10 O -0.351476 11 H 0.143733 12 H 0.131364 13 F -0.165379 14 H 0.132613 15 H 0.147813 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.080192 2 C -0.079388 3 C 0.305943 4 C -0.070757 5 C 0.058916 6 C -0.076834 7 C 0.348527 8 O -0.049745 10 O -0.351476 13 F -0.165379 Electronic spatial extent (au): = 1562.9053 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.3937 Y= -0.0103 Z= 0.0000 Tot= 1.3937 Quadrupole moment (field-independent basis, Debye-Ang): XX= -52.0073 YY= -57.7936 ZZ= -57.8472 XY= 5.9814 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.8754 YY= -1.9109 ZZ= -1.9645 XY= 5.9814 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0709 YYY= 37.1993 ZZZ= 0.0000 XYY= 27.3926 XXY= -13.8690 XXZ= 0.0000 XZZ= 0.1390 YZZ= 1.0529 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -362.4064 YYYY= -1338.0143 ZZZZ= -57.8381 XXXY= -18.3448 XXXZ= 0.0000 YYYX= 75.6731 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -288.5943 XXZZ= -81.5859 YYZZ= -240.5807 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -8.1313 N-N= 4.884685318149D+02 E-N=-2.195826242449D+03 KE= 5.173839982419D+02 Symmetry A' KE= 4.963753638242D+02 Symmetry A" KE= 2.100863441774D+01 1\1\GINC-COMPUTE-0-44\SP\RM062X\CC-pVTZ\C7H5F1O2\ZDANOVSKAIA\25-May-20 16\0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\F Grignard Product (C7H5 O2F)\\0,1\C\C,1,1.3826158\C,2,1.3833903,1,118.30212\C,3,1.3821898,2,12 2.69667,1,0.,0\C,4,1.3844879,3,118.41042,2,0.,0\C,1,1.39157,2,120.2874 4,3,0.,0\C,6,1.4831563,1,117.88499,2,180.,0\O,7,1.3469178,6,113.01378, 1,180.,0\H,8,0.9660589,7,106.62627,6,180.,0\O,7,1.2012658,6,124.76241, 1,0.,0\H,5,1.0801581,6,119.60553,1,180.,0\H,4,1.0802878,5,122.05172,6, 180.,0\F,3,1.3372143,4,118.6677,5,180.,0\H,2,1.0802152,1,122.1723,6,18 0.,0\H,1,1.0810672,2,121.01285,3,180.,0\\Version=EM64L-G09RevD.01\Stat e=1-A'\HF=-520.0649561\RMSD=5.791e-09\Dipole=0.5480658,0.,-0.0172076\Q uadrupole=2.5300281,-1.4605489,-1.0694792,0.,-4.6004248,0.\PG=CS [SG(C 7H5F1O2)]\\@ THOUGH I SPEAK WITH THE TONGUES OF MEN AND OF ANGELS, AND HAVE NOT LOVE, I AM BECOME AS SOUNDING BRASS, A TINKLING CYMBAL. AND THOUGH I HAVE THE GIFT OF PROPHECY, AND UNDERSTAND ALL MYSTERIES, AND ALL KNOWLEDGE. AND THOUGH I HAVE ALL FAITH, SO THAT I COULD REMOVE MOUNTAINS, AND HAVE NOT LOVE, I AM NOTHING. AND THOUGH I BESTOW ALL MY GOODS TO FEED THE POOR, AND THOUGH I GIVE MY BODY TO BE BURNED, AND HAVE NOT LOVE IT PROFITETH ME NOTHING. LOVE SUFFERETH LONG, AND IS KIND, LOVE ENVIETH NOT, LOVE VAUNTETH NOT ITSELF, IS NOT PUFFED UP, DOTH NOT BEHAVE ITSELF UNSEEMLY, SEEKETH NOT HER OWN, IS NOT EASILY PROVOKED, THINKETH NO EVIL, REJOICETH NOT IN INIQUITY, BUT REJOICETH IN THE TRUTH, BEARETH ALL THINGS, BELIEVETH ALL THINGS, HOPETH ALL THINGS, ENDURETH ALL THINGS. LOVE NEVER FAILETH, BUT WHETHER THERE BE PROPHECIES, THEY SHALL FAIL, WHETHER THERE BE TONGUES, THEY SHALL CEASE, WHETHER THERE BE KNOWLEDGE, IT SHALL VANISH AWAY. FOR WE KNOW IN PART, AND WE PROPHESY IN PART. BUT WHEN THAT WHICH IS PERFECT IS COME, THEN THAT WHICH IS IN PART SHALL BE DONE AWAY. WHEN I WAS A CHILD, I SPAKE AS A CHILD, I UNDERSTOOD AS A CHILD, I THOUGHT AS A CHILD. BUT WHEN I BECAME A MAN, I PUT AWAY CHILDISH THINGS. FOR NOW WE SEE THROUGH A GLASS, DARKLY, BUT THEN FACE TO FACE. NOW I KNOW IN PART. BUT THEN SHALL I KNOW EVEN AS ALSO I AM KNOWN. AND NOW ABIDETH FAITH, HOPE AND LOVE, THESE THREE. BUT THE GREATEST OF THESE IS LOVE. I CORINTHIANS 13 Job cpu time: 0 days 0 hours 40 minutes 49.0 seconds. File lengths (MBytes): RWF= 84 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 17:34:22 2016.