Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567412/Gau-14618.inp" -scrdir="/scratch/webmo-5066/567412/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 14619. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------------ 5. m-Br Nitrobenzene NMR ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 N 6 B6 1 A5 2 D4 0 O 7 B7 6 A6 1 D5 0 O 7 B8 6 A7 1 D6 0 H 5 B9 4 A8 3 D7 0 H 4 B10 3 A9 2 D8 0 H 3 B11 2 A10 1 D9 0 Br 2 B12 1 A11 6 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.38375 B2 1.38807 B3 1.38746 B4 1.3858 B5 1.38263 B6 1.47935 B7 1.20934 B8 1.2092 B9 1.07878 B10 1.0807 B11 1.0805 B12 1.88853 B13 1.07889 A1 121.17157 A2 119.5796 A3 120.58022 A4 117.50967 A5 118.12966 A6 117.29095 A7 117.43134 A8 122.24594 A9 119.58077 A10 119.81832 A11 119.31303 A12 122.17185 D1 0. D2 0. D3 0. D4 180. D5 180. D6 0. D7 180. D8 180. D9 180. D10 180. D11 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.383754 3 6 0 1.187660 0.000000 2.102221 4 6 0 2.398226 0.000000 1.424305 5 6 0 2.430425 0.000000 0.038883 6 6 0 1.226304 0.000000 -0.638637 7 7 0 1.242312 0.000000 -2.117901 8 8 0 2.322973 0.000000 -2.660731 9 8 0 0.175158 0.000000 -2.686543 10 1 0 3.355946 0.000000 -0.515349 11 1 0 3.322911 0.000000 1.983661 12 1 0 1.162143 0.000000 3.182422 13 35 0 -1.646721 0.000000 2.308343 14 1 0 -0.913233 0.000000 -0.574467 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.383754 0.000000 3 C 2.414513 1.388068 0.000000 4 C 2.789289 2.398569 1.387458 0.000000 5 C 2.430736 2.777705 2.408699 1.385796 0.000000 6 C 1.382635 2.365140 2.741130 2.372578 1.381644 7 N 2.455370 3.715498 4.220476 3.726038 2.462383 8 O 3.532095 4.664125 4.896392 4.085729 2.701751 9 O 2.692247 4.074064 4.894632 4.673446 3.537538 10 H 3.395284 3.856029 3.398991 2.163211 1.078778 11 H 3.869968 3.376630 2.138540 1.080705 2.139788 12 H 3.387976 2.141444 1.080502 2.149158 3.389746 13 Br 2.835513 1.888532 2.841866 4.140425 4.666215 14 H 1.078892 2.160700 3.402707 3.867926 3.399448 6 7 8 9 10 6 C 0.000000 7 N 1.479351 0.000000 8 O 2.300337 1.209336 0.000000 9 O 2.301918 1.209202 2.147970 0.000000 10 H 2.133207 2.652474 2.381112 3.851167 0.000000 11 H 3.357411 4.599098 4.750816 5.631976 2.499229 12 H 3.821597 5.300929 5.957345 5.951377 4.299568 13 Br 4.115697 5.285654 6.360045 5.316778 5.744554 14 H 2.140499 2.651143 3.850393 2.376018 4.269588 11 12 13 14 11 H 0.000000 12 H 2.471022 0.000000 13 Br 4.980227 2.941722 0.000000 14 H 4.948630 4.292016 2.974660 0.000000 Stoichiometry C6H4BrNO2 Framework group CS[SG(C6H4BrNO2)] Deg. of freedom 25 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.584561 0.000000 2 6 0 0.517624 -0.698732 0.000000 3 6 0 -0.315053 -1.809309 0.000000 4 6 0 -1.691321 -1.633448 0.000000 5 6 0 -2.239430 -0.360653 0.000000 6 6 0 -1.376170 0.718106 0.000000 7 7 0 -1.944367 2.083987 0.000000 8 8 0 -3.149630 2.183162 0.000000 9 8 0 -1.167403 3.010538 0.000000 10 1 0 -3.305080 -0.192870 0.000000 11 1 0 -2.339634 -2.498094 0.000000 12 1 0 0.112685 -2.801541 0.000000 13 35 0 2.390655 -0.940203 0.000000 14 1 0 0.632040 1.458937 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 2.1408206 0.4856524 0.3958520 Standard basis: CC-pVTZ (5D, 7F) There are 294 symmetry adapted cartesian basis functions of A' symmetry. There are 130 symmetry adapted cartesian basis functions of A" symmetry. There are 249 symmetry adapted basis functions of A' symmetry. There are 120 symmetry adapted basis functions of A" symmetry. 369 basis functions, 733 primitive gaussians, 424 cartesian basis functions 49 alpha electrons 49 beta electrons nuclear repulsion energy 713.2914966582 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. NBasis= 369 RedAO= T EigKep= 4.79D-05 NBF= 249 120 NBsUse= 369 1.00D-06 EigRej= -1.00D+00 NBFU= 249 120 ExpMin= 1.02D-01 ExpMax= 1.06D+07 ExpMxC= 1.21D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A") (A") (A') (A') (A') (A") Virtual (A") (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -3010.37359799 A.U. after 15 cycles NFock= 15 Conv=0.53D-08 -V/T= 2.0018 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 369 NBasis= 369 NAE= 49 NBE= 49 NFC= 0 NFV= 0 NROrb= 369 NOA= 49 NOB= 49 NVA= 320 NVB= 320 **** Warning!!: The largest alpha MO coefficient is 0.35123078D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 14 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 5.23D-13 3.33D-08 XBig12= 1.30D+01 1.08D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 5.23D-13 3.33D-08 XBig12= 1.56D-01 2.11D-01. 3 vectors produced by pass 2 Test12= 5.23D-13 3.33D-08 XBig12= 2.34D-03 2.39D-02. 3 vectors produced by pass 3 Test12= 5.23D-13 3.33D-08 XBig12= 3.32D-05 1.42D-03. 3 vectors produced by pass 4 Test12= 5.23D-13 3.33D-08 XBig12= 4.95D-07 3.13D-04. 3 vectors produced by pass 5 Test12= 5.23D-13 3.33D-08 XBig12= 9.19D-09 3.30D-05. 3 vectors produced by pass 6 Test12= 5.23D-13 3.33D-08 XBig12= 9.05D-11 2.39D-06. 3 vectors produced by pass 7 Test12= 5.23D-13 3.33D-08 XBig12= 8.35D-13 2.00D-07. InvSVY: IOpt=1 It= 1 EMax= 6.74D-17 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 41.1968 Anisotropy = 181.6929 XX= -10.8094 YX= -24.1088 ZX= 0.0000 XY= -48.5648 YY= -27.9256 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 162.3254 Eigenvalues: -56.6985 17.9636 162.3254 2 C Isotropic = 28.0278 Anisotropy = 153.2110 XX= -77.9882 YX= 15.5489 ZX= 0.0000 XY= 12.0010 YY= 31.9032 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 130.1685 Eigenvalues: -79.6886 33.6036 130.1685 3 C Isotropic = 28.6373 Anisotropy = 192.8266 XX= 4.5367 YX= 38.6186 ZX= 0.0000 XY= 40.0697 YY= -75.8130 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 157.1884 Eigenvalues: -91.8697 20.5933 157.1884 4 C Isotropic = 38.3120 Anisotropy = 210.8796 XX= -18.6369 YX= -51.7179 ZX= 0.0000 XY= -44.7370 YY= -45.3255 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 178.8984 Eigenvalues: -82.0207 18.0583 178.8984 5 C Isotropic = 46.8566 Anisotropy = 209.5066 XX= -57.0169 YX= -3.7172 ZX= 0.0000 XY= 17.7650 YY= 11.0590 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 186.5277 Eigenvalues: -57.7341 11.7762 186.5277 6 C Isotropic = 18.6726 Anisotropy = 125.3393 XX= 12.4704 YX= 39.9153 ZX= 0.0000 XY= 37.2275 YY= -58.6848 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 102.2321 Eigenvalues: -75.5812 29.3668 102.2321 7 N Isotropic = -175.9171 Anisotropy = 350.5890 XX= -254.1326 YX= 38.5584 ZX= 0.0000 XY= 38.4579 YY= -331.4276 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 57.8088 Eigenvalues: -347.3375 -238.2227 57.8088 8 O Isotropic = -349.9464 Anisotropy = 828.8928 XX= -719.4639 YX= -167.2022 ZX= 0.0000 XY= 74.7855 YY= -533.0241 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 202.6487 Eigenvalues: -730.2881 -522.2000 202.6487 9 O Isotropic = -349.3356 Anisotropy = 828.0742 XX= -670.5216 YX= 26.9651 ZX= 0.0000 XY= -215.5004 YY= -580.1990 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 202.7139 Eigenvalues: -729.8875 -520.8331 202.7139 10 H Isotropic = 22.6842 Anisotropy = 5.8617 XX= 22.3160 YX= -0.5971 ZX= 0.0000 XY= 0.0662 YY= 26.5755 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.1612 Eigenvalues: 19.1612 22.2995 26.5920 11 H Isotropic = 23.6093 Anisotropy = 6.1559 XX= 26.3073 YX= -2.3617 ZX= 0.0000 XY= -2.0256 YY= 24.2906 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 20.2301 Eigenvalues: 20.2301 22.8846 27.7133 12 H Isotropic = 23.3837 Anisotropy = 10.9095 XX= 28.3514 YX= 4.7044 ZX= 0.0000 XY= 3.9685 YY= 22.4995 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 19.3003 Eigenvalues: 19.3003 20.1942 30.6567 13 Br Isotropic = 2064.0029 Anisotropy = 1241.0471 XX= 2871.7195 YX= -149.7853 ZX= 0.0000 XY= -158.6532 YY= 1680.8871 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 1639.4019 Eigenvalues: 1639.4019 1661.2391 2891.3676 14 H Isotropic = 22.4864 Anisotropy = 10.7875 XX= 24.4415 YX= -4.7646 ZX= 0.0000 XY= -4.6457 YY= 25.4504 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 17.5674 Eigenvalues: 17.5674 20.2138 29.6781 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") Virtual (A") (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A") (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A') (A") (A') (A') (A") (A") (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A") (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -485.39591 -63.38387 -57.20435 -57.20199 -57.20189 Alpha occ. eigenvalues -- -19.67232 -19.67225 -15.01239 -10.63250 -10.62615 Alpha occ. eigenvalues -- -10.59097 -10.58875 -10.58644 -10.58509 -9.04827 Alpha occ. eigenvalues -- -6.87140 -6.86241 -6.86213 -2.90530 -2.90204 Alpha occ. eigenvalues -- -2.90173 -2.89346 -2.89346 -1.38656 -1.19964 Alpha occ. eigenvalues -- -1.02684 -0.94601 -0.91361 -0.85332 -0.81452 Alpha occ. eigenvalues -- -0.72896 -0.69570 -0.66035 -0.64335 -0.61894 Alpha occ. eigenvalues -- -0.60721 -0.57005 -0.54647 -0.51718 -0.49645 Alpha occ. eigenvalues -- -0.47336 -0.44388 -0.40688 -0.40285 -0.39558 Alpha occ. eigenvalues -- -0.39474 -0.36926 -0.35646 -0.32557 Alpha virt. eigenvalues -- -0.06423 -0.01738 0.01826 0.02569 0.07089 Alpha virt. eigenvalues -- 0.10085 0.10264 0.13318 0.16315 0.17204 Alpha virt. eigenvalues -- 0.19198 0.22364 0.24147 0.24929 0.25960 Alpha virt. eigenvalues -- 0.26797 0.27038 0.29815 0.30035 0.32059 Alpha virt. eigenvalues -- 0.32093 0.33019 0.33744 0.33803 0.35358 Alpha virt. eigenvalues -- 0.37283 0.38445 0.38620 0.40061 0.40307 Alpha virt. eigenvalues -- 0.40847 0.41741 0.42370 0.44713 0.45216 Alpha virt. eigenvalues -- 0.46380 0.47515 0.49138 0.50452 0.51380 Alpha virt. eigenvalues -- 0.52189 0.53470 0.54733 0.57827 0.58395 Alpha virt. eigenvalues -- 0.60556 0.61150 0.61720 0.63325 0.63573 Alpha virt. eigenvalues -- 0.66859 0.67971 0.70671 0.70724 0.72080 Alpha virt. eigenvalues -- 0.73289 0.73305 0.74134 0.75973 0.77007 Alpha virt. eigenvalues -- 0.77891 0.80552 0.80988 0.81445 0.86835 Alpha virt. eigenvalues -- 0.87187 0.88739 0.89038 0.90296 0.92427 Alpha virt. eigenvalues -- 0.94600 0.96924 0.97100 1.00070 1.01828 Alpha virt. eigenvalues -- 1.02141 1.05640 1.05777 1.06649 1.09761 Alpha virt. eigenvalues -- 1.12835 1.13281 1.15274 1.15616 1.18571 Alpha virt. eigenvalues -- 1.24391 1.24508 1.25839 1.26824 1.27534 Alpha virt. eigenvalues -- 1.31107 1.31663 1.32987 1.35663 1.38764 Alpha virt. eigenvalues -- 1.39179 1.44111 1.45409 1.47607 1.47769 Alpha virt. eigenvalues -- 1.48348 1.50391 1.50710 1.52185 1.52469 Alpha virt. eigenvalues -- 1.53315 1.56538 1.57694 1.60221 1.61204 Alpha virt. eigenvalues -- 1.65477 1.68016 1.68583 1.69517 1.72095 Alpha virt. eigenvalues -- 1.73625 1.77602 1.77621 1.79997 1.80244 Alpha virt. eigenvalues -- 1.82934 1.84986 1.88381 1.91149 1.91283 Alpha virt. eigenvalues -- 1.93373 1.95412 1.96661 2.00604 2.02273 Alpha virt. eigenvalues -- 2.03090 2.06243 2.11459 2.14037 2.15380 Alpha virt. eigenvalues -- 2.17223 2.20331 2.22736 2.22939 2.25821 Alpha virt. eigenvalues -- 2.26292 2.26480 2.29384 2.31649 2.34749 Alpha virt. eigenvalues -- 2.37139 2.38849 2.39799 2.41517 2.44615 Alpha virt. eigenvalues -- 2.48804 2.51535 2.51585 2.52885 2.53069 Alpha virt. eigenvalues -- 2.62322 2.63215 2.63225 2.68597 2.69427 Alpha virt. eigenvalues -- 2.70594 2.71662 2.73927 2.74182 2.76989 Alpha virt. eigenvalues -- 2.77454 2.80334 2.80863 2.83267 2.83733 Alpha virt. eigenvalues -- 2.88520 2.90764 2.91412 2.92051 2.96037 Alpha virt. eigenvalues -- 2.97626 2.98080 3.01165 3.02298 3.02618 Alpha virt. eigenvalues -- 3.03430 3.05602 3.06888 3.08259 3.09406 Alpha virt. eigenvalues -- 3.10265 3.11888 3.12933 3.13511 3.14971 Alpha virt. eigenvalues -- 3.16863 3.18018 3.27530 3.27819 3.27866 Alpha virt. eigenvalues -- 3.28458 3.31286 3.33400 3.33986 3.35427 Alpha virt. eigenvalues -- 3.36046 3.39390 3.39571 3.43495 3.49931 Alpha virt. eigenvalues -- 3.50702 3.54787 3.59347 3.60156 3.61688 Alpha virt. eigenvalues -- 3.62316 3.70030 3.70674 3.71690 3.74297 Alpha virt. eigenvalues -- 3.74349 3.75254 3.76760 3.77416 3.79103 Alpha virt. eigenvalues -- 3.80205 3.80570 3.81468 3.84228 3.89743 Alpha virt. eigenvalues -- 3.91686 3.93664 3.95861 3.98438 3.99923 Alpha virt. eigenvalues -- 4.04653 4.05613 4.07082 4.07366 4.09282 Alpha virt. eigenvalues -- 4.12446 4.14261 4.15804 4.16632 4.20007 Alpha virt. eigenvalues -- 4.21349 4.23117 4.24866 4.26008 4.26266 Alpha virt. eigenvalues -- 4.26967 4.28301 4.30104 4.32160 4.37086 Alpha virt. eigenvalues -- 4.38231 4.44158 4.47874 4.54070 4.58402 Alpha virt. eigenvalues -- 4.60065 4.62641 4.63887 4.64653 4.67536 Alpha virt. eigenvalues -- 4.67806 4.71994 4.73054 4.76026 4.80536 Alpha virt. eigenvalues -- 4.83147 4.84274 4.87483 4.91555 4.93911 Alpha virt. eigenvalues -- 5.00104 5.00526 5.05119 5.07318 5.09633 Alpha virt. eigenvalues -- 5.14363 5.15937 5.16722 5.22847 5.25073 Alpha virt. eigenvalues -- 5.26929 5.34125 5.35479 5.40517 5.51384 Alpha virt. eigenvalues -- 5.56040 5.60060 5.62845 5.63830 5.73889 Alpha virt. eigenvalues -- 5.80867 5.91858 5.94264 6.02868 6.18003 Alpha virt. eigenvalues -- 6.24375 6.29114 6.35381 6.39846 6.42957 Alpha virt. eigenvalues -- 6.47771 6.51502 6.53717 6.67507 6.85058 Alpha virt. eigenvalues -- 6.87660 6.89327 7.06819 7.17926 7.19912 Alpha virt. eigenvalues -- 7.56945 8.34310 9.51631 11.69380 12.36502 Alpha virt. eigenvalues -- 12.74839 13.05915 13.83444 13.89794 15.33695 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.098011 0.397233 -0.062790 -0.026074 -0.042579 0.435698 2 C 0.397233 5.097833 0.454770 -0.070208 -0.036685 -0.086276 3 C -0.062790 0.454770 4.996473 0.482766 -0.056149 -0.028036 4 C -0.026074 -0.070208 0.482766 4.942288 0.468885 -0.091952 5 C -0.042579 -0.036685 -0.056149 0.468885 4.983616 0.442587 6 C 0.435698 -0.086276 -0.028036 -0.091952 0.442587 5.270377 7 N -0.052572 0.002713 -0.000206 0.002911 -0.054637 0.319107 8 O 0.006120 0.000115 -0.000008 0.003159 0.034922 -0.137917 9 O 0.036013 0.004171 0.000101 -0.000070 0.006306 -0.139556 10 H 0.004770 -0.000946 0.004970 -0.034104 0.419771 -0.040123 11 H -0.001220 0.006230 -0.049914 0.434173 -0.047806 0.007542 12 H 0.009465 -0.052600 0.425026 -0.039856 0.006671 -0.002151 13 Br -0.078855 0.314213 -0.076171 0.008575 -0.000215 0.010458 14 H 0.405587 -0.038894 0.006905 -0.001563 0.004583 -0.028054 7 8 9 10 11 12 1 C -0.052572 0.006120 0.036013 0.004770 -0.001220 0.009465 2 C 0.002713 0.000115 0.004171 -0.000946 0.006230 -0.052600 3 C -0.000206 -0.000008 0.000101 0.004970 -0.049914 0.425026 4 C 0.002911 0.003159 -0.000070 -0.034104 0.434173 -0.039856 5 C -0.054637 0.034922 0.006306 0.419771 -0.047806 0.006671 6 C 0.319107 -0.137917 -0.139556 -0.040123 0.007542 -0.002151 7 N 5.438381 0.500417 0.501226 -0.007951 -0.000107 0.000018 8 O 0.500417 7.968604 -0.115335 0.016759 -0.000012 -0.000001 9 O 0.501226 -0.115335 7.965531 0.000637 0.000007 -0.000001 10 H -0.007951 0.016759 0.000637 0.483508 -0.006873 -0.000128 11 H -0.000107 -0.000012 0.000007 -0.006873 0.545080 -0.007069 12 H 0.000018 -0.000001 -0.000001 -0.000128 -0.007069 0.516502 13 Br -0.000203 0.000005 0.000004 0.000045 -0.000260 -0.001312 14 H -0.008128 0.000643 0.016886 -0.000214 0.000037 -0.000041 13 14 1 C -0.078855 0.405587 2 C 0.314213 -0.038894 3 C -0.076171 0.006905 4 C 0.008575 -0.001563 5 C -0.000215 0.004583 6 C 0.010458 -0.028054 7 N -0.000203 -0.008128 8 O 0.000005 0.000643 9 O 0.000004 0.016886 10 H 0.000045 -0.000214 11 H -0.000260 0.000037 12 H -0.001312 -0.000041 13 Br 34.888385 -0.002570 14 H -0.002570 0.455788 Mulliken charges: 1 1 C -0.128808 2 C 0.008330 3 C -0.097738 4 C -0.078929 5 C -0.129271 6 C 0.068295 7 N 0.359029 8 O -0.277470 9 O -0.275920 10 H 0.159877 11 H 0.120191 12 H 0.145477 13 Br -0.062098 14 H 0.189034 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.060226 2 C 0.008330 3 C 0.047738 4 C 0.041263 5 C 0.030606 6 C 0.068295 7 N 0.359029 8 O -0.277470 9 O -0.275920 13 Br -0.062098 Electronic spatial extent (au): = 2400.2737 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.2264 Y= -3.9102 Z= 0.0000 Tot= 3.9168 Quadrupole moment (field-independent basis, Debye-Ang): XX= -71.5199 YY= -74.3018 ZZ= -70.4112 XY= 9.8427 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.5577 YY= -2.2242 ZZ= 1.6664 XY= 9.8427 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 76.4602 YYY= -57.6693 ZZZ= 0.0000 XYY= 35.5706 XXY= -30.0141 XXZ= 0.0000 XZZ= 19.0461 YZZ= 2.4059 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1570.8941 YYYY= -1126.0669 ZZZZ= -75.0726 XXXY= 382.4113 XXXZ= 0.0000 YYYX= 379.8317 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -479.7801 XXZZ= -278.4062 YYZZ= -188.0112 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 93.4190 N-N= 7.132914966582D+02 E-N=-8.596945175816D+03 KE= 3.005030730856D+03 Symmetry A' KE= 2.613952029124D+03 Symmetry A" KE= 3.910787017321D+02 1\1\GINC-COMPUTE-0-14\SP\RM062X\CC-pVTZ\C6H4Br1N1O2\ZDANOVSKAIA\25-May -2016\0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\5. m-Br Nitrobenzene NMR\\0,1\C\C,1,1.3837541\C,2,1.3880678,1,121.17157\C,3,1.3874584,2,119 .5796,1,0.,0\C,4,1.385796,3,120.58022,2,0.,0\C,1,1.3826345,2,117.50967 ,3,0.,0\N,6,1.4793508,1,118.12966,2,180.,0\O,7,1.2093364,6,117.29095,1 ,180.,0\O,7,1.2092021,6,117.43134,1,0.,0\H,5,1.0787776,4,122.24594,3,1 80.,0\H,4,1.0807046,3,119.58077,2,180.,0\H,3,1.0805018,2,119.81832,1,1 80.,0\Br,2,1.8885321,1,119.31303,6,180.,0\H,1,1.078892,2,122.17185,3,1 80.,0\\Version=EM64L-G09RevD.01\State=1-A'\HF=-3010.373598\RMSD=5.262e -09\Dipole=0.4928864,0.,1.4600315\Quadrupole=5.202528,1.2389533,-6.441 4813,0.,4.5523134,0.\PG=CS [SG(C6H4Br1N1O2)]\\@ WE'RE IN THE POSITION OF A VISITOR FROM ANOTHER DIMENSION WHO COMES TO EARTH AND SEES A CHESS MATCH. ASSUMING HE KNOWS IT'S A GAME, HE'S GOT TWO PROBLEMS: FIRST, FIGURE OUT THE RULES, AND SECOND, FIGURE OUT HOW TO WIN. NINETY PERCENT OF SCIENCE (INCLUDING VIRTUALLY ALL OF CHEMISRY) IS IN THAT SECOND CATEGORY. THEY'RE TRYING TO APPLY THE LAWS THAT ARE ALREADY KNOWN. -- SHELDON GLASHOW, 1979 Job cpu time: 0 days 0 hours 48 minutes 25.5 seconds. File lengths (MBytes): RWF= 84 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 17:55:37 2016.