Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567413/Gau-7225.inp" -scrdir="/scratch/webmo-5066/567413/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 7226. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------------ 5. p-Br Nitrobenzene NMR ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 N 6 B6 1 A5 2 D4 0 O 7 B7 6 A6 1 D5 0 O 7 B8 6 A7 1 D6 0 H 5 B9 4 A8 3 D7 0 H 4 B10 3 A9 2 D8 0 Br 3 B11 2 A10 1 D9 0 H 2 B12 1 A11 6 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.38436 B2 1.38787 B3 1.38787 B4 1.38436 B5 1.38282 B6 1.47488 B7 1.20983 B8 1.20983 B9 1.07916 B10 1.07978 B11 1.88766 B12 1.07978 B13 1.07916 A1 119.26175 A2 121.54288 A3 119.26175 A4 118.74986 A5 118.78305 A6 117.44333 A7 117.44333 A8 121.53093 A9 120.16464 A10 119.22856 A11 120.57361 A12 121.53093 D1 0. D2 0. D3 0. D4 180. D5 180. D6 0. D7 180. D8 180. D9 180. D10 180. D11 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.384360 3 6 0 1.210776 0.000000 2.062754 4 6 0 2.422338 0.000000 1.385763 5 6 0 2.423941 0.000000 0.001404 6 6 0 1.212357 0.000000 -0.665118 7 7 0 1.213211 0.000000 -2.139993 8 8 0 2.287219 0.000000 -2.696947 9 8 0 0.139849 0.000000 -2.698191 10 1 0 3.344422 0.000000 -0.561884 11 1 0 3.351369 0.000000 1.936067 12 35 0 1.209683 0.000000 3.950411 13 1 0 -0.929668 0.000000 1.933587 14 1 0 -0.919827 0.000000 -0.564354 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.384360 0.000000 3 C 2.391847 1.387875 0.000000 4 C 2.790709 2.422338 1.387875 0.000000 5 C 2.423942 2.790709 2.391847 1.384360 0.000000 6 C 1.382820 2.381212 2.727872 2.381211 1.382819 7 N 2.459970 3.727325 4.202748 3.727325 2.459970 8 O 3.536226 4.678509 4.879906 4.084946 2.701813 9 O 2.701813 4.084946 4.879906 4.678508 3.536226 10 H 3.391293 3.869499 3.382479 2.154894 1.079156 11 H 3.870404 3.396477 2.144338 1.079784 2.145470 12 Br 4.131475 2.836891 1.887658 2.836891 4.131475 13 H 2.145470 1.079784 2.144338 3.396477 3.870404 14 H 1.079156 2.154894 3.382479 3.869499 3.391293 6 7 8 9 10 6 C 0.000000 7 N 1.474876 0.000000 8 O 2.298621 1.209831 0.000000 9 O 2.298621 1.209831 2.147370 0.000000 10 H 2.134563 2.651884 2.382472 3.851376 0.000000 11 H 3.367719 4.602824 4.753655 5.638281 2.497960 12 Br 4.615530 6.090406 6.734127 6.734127 4.991785 13 H 3.367720 4.602824 5.638281 4.753655 4.949265 14 H 2.134563 2.651884 3.851376 2.382473 4.264250 11 12 13 14 11 H 0.000000 12 Br 2.940137 0.000000 13 H 4.281038 2.940137 0.000000 14 H 4.949265 4.991785 2.497960 0.000000 Stoichiometry C6H4BrNO2 Framework group C2V[C2(NCCBr),SGV(C4H4O2)] Deg. of freedom 13 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.211971 -1.100132 2 6 0 0.000000 1.211169 0.284228 3 6 0 0.000000 0.000000 0.961920 4 6 0 0.000000 -1.211169 0.284228 5 6 0 0.000000 -1.211971 -1.100132 6 6 0 0.000000 0.000000 -1.765952 7 7 0 0.000000 0.000000 -3.240828 8 8 0 0.000000 -1.073685 -3.798404 9 8 0 0.000000 1.073685 -3.798404 10 1 0 0.000000 -2.132125 -1.663953 11 1 0 0.000000 -2.140519 0.833993 12 35 0 0.000000 0.000000 2.849578 13 1 0 0.000000 2.140519 0.833993 14 1 0 0.000000 2.132125 -1.663953 --------------------------------------------------------------------- Rotational constants (GHZ): 4.0193799 0.3793321 0.3466196 Standard basis: CC-pVTZ (5D, 7F) There are 165 symmetry adapted cartesian basis functions of A1 symmetry. There are 54 symmetry adapted cartesian basis functions of A2 symmetry. There are 76 symmetry adapted cartesian basis functions of B1 symmetry. There are 129 symmetry adapted cartesian basis functions of B2 symmetry. There are 138 symmetry adapted basis functions of A1 symmetry. There are 51 symmetry adapted basis functions of A2 symmetry. There are 69 symmetry adapted basis functions of B1 symmetry. There are 111 symmetry adapted basis functions of B2 symmetry. 369 basis functions, 733 primitive gaussians, 424 cartesian basis functions 49 alpha electrons 49 beta electrons nuclear repulsion energy 704.0227145158 Hartrees. NAtoms= 14 NActive= 14 NUniq= 9 SFac= 2.42D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. NBasis= 369 RedAO= T EigKep= 3.91D-05 NBF= 138 51 69 111 NBsUse= 369 1.00D-06 EigRej= -1.00D+00 NBFU= 138 51 69 111 ExpMin= 1.02D-01 ExpMax= 1.06D+07 ExpMxC= 1.21D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (B1) (B1) (A1) (B2) (B1) (A2) (A2) (B2) (A1) (B2) (B1) Virtual (B1) (A2) (A1) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (A1) (B1) (A1) (B2) (B1) (A2) (B2) (A1) (B1) (A1) (B2) (A2) (A1) (B2) (A1) (A1) (B1) (B2) (B1) (A2) (B2) (A1) (A1) (B2) (B2) (B1) (A1) (A1) (A1) (B2) (B1) (B2) (A2) (B1) (A1) (B2) (A2) (A1) (B2) (A2) (A1) (A1) (A1) (A2) (B2) (B1) (B2) (A1) (B1) (B1) (A1) (B2) (B2) (A1) (B2) (A1) (A2) (B2) (B1) (A1) (A2) (A1) (B1) (A1) (B2) (B1) (A1) (B2) (A2) (A1) (B1) (B2) (B2) (A2) (B2) (B1) (A1) (B2) (A1) (A2) (A1) (A1) (B2) (B2) (B1) (A2) (B1) (A1) (A1) (B2) (A2) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A1) (A2) (B1) (A1) (A2) (B1) (B2) (A1) (B2) (A1) (B2) (B1) (A1) (B1) (A1) (B2) (B2) (A1) (B1) (A2) (B2) (A1) (A2) (B1) (B1) (B2) (A2) (A1) (B2) (A1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (B1) (A1) (B2) (B2) (B1) (A1) (A2) (B1) (A1) (B1) (A2) (B2) (A1) (A2) (B2) (B1) (A1) (B2) (B1) (A2) (A1) (B1) (B2) (A1) (A1) (A1) (B2) (B1) (A2) (B2) (A1) (A1) (A2) (B2) (A1) (B2) (A2) (B1) (A1) (B1) (B2) (A2) (B1) (B2) (A1) (B1) (B2) (B2) (A1) (B1) (A2) (A1) (A2) (B2) (A1) (B1) (A1) (B1) (A2) (B2) (A1) (A1) (B2) (A2) (B1) (B2) (B2) (A2) (A1) (B1) (A1) (A2) (B2) (B1) (A1) (A1) (B2) (A1) (B2) (A2) (B2) (A2) (A1) (B1) (B2) (B1) (A2) (A1) (A1) (B2) (A1) (A2) (B2) (B1) (A1) (B1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (B2) (A2) (B1) (A2) (B2) (B1) (A2) (A1) (B1) (B2) (A1) (A1) (A1) (B2) (A2) (B2) (B2) (A2) (B1) (A1) (B2) (A1) (B2) (B1) (A2) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (B2) (B2) (A1) (B2) (A1) (A2) (B1) (A1) (A2) (A1) (B2) (B1) (B2) (A1) (B2) (A2) (B1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (B2) (A1) (A1) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -3010.37471072 A.U. after 14 cycles NFock= 14 Conv=0.95D-08 -V/T= 2.0018 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 369 NBasis= 369 NAE= 49 NBE= 49 NFC= 0 NFV= 0 NROrb= 369 NOA= 49 NOB= 49 NVA= 320 NVB= 320 **** Warning!!: The largest alpha MO coefficient is 0.41550087D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 14 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 5.23D-13 3.33D-08 XBig12= 1.37D+01 1.38D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 5.23D-13 3.33D-08 XBig12= 1.70D-01 2.63D-01. 3 vectors produced by pass 2 Test12= 5.23D-13 3.33D-08 XBig12= 2.30D-03 2.35D-02. 3 vectors produced by pass 3 Test12= 5.23D-13 3.33D-08 XBig12= 2.59D-05 1.81D-03. 3 vectors produced by pass 4 Test12= 5.23D-13 3.33D-08 XBig12= 3.88D-07 2.80D-04. 3 vectors produced by pass 5 Test12= 5.23D-13 3.33D-08 XBig12= 7.76D-09 3.64D-05. 3 vectors produced by pass 6 Test12= 5.23D-13 3.33D-08 XBig12= 7.45D-11 2.58D-06. 3 vectors produced by pass 7 Test12= 5.23D-13 3.33D-08 XBig12= 7.13D-13 2.14D-07. InvSVY: IOpt=1 It= 1 EMax= 3.95D-17 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 43.9979 Anisotropy = 206.5632 XX= 181.7067 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -43.1902 ZY= 18.8600 XZ= 0.0000 YZ= 42.3732 ZZ= -6.5229 Eigenvalues: -60.5426 10.8296 181.7067 2 C Isotropic = 35.3018 Anisotropy = 182.6598 XX= 157.0750 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -51.7560 ZY= -48.7246 XZ= 0.0000 YZ= -40.0258 ZZ= 0.5864 Eigenvalues: -77.1026 25.9330 157.0750 3 C Isotropic = 19.9639 Anisotropy = 165.3219 XX= 130.1785 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.9037 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -95.1904 Eigenvalues: -95.1904 24.9037 130.1785 4 C Isotropic = 35.3018 Anisotropy = 182.6598 XX= 157.0750 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -51.7560 ZY= 48.7246 XZ= 0.0000 YZ= 40.0258 ZZ= 0.5864 Eigenvalues: -77.1026 25.9330 157.0750 5 C Isotropic = 43.9979 Anisotropy = 206.5632 XX= 181.7067 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -43.1902 ZY= -18.8600 XZ= 0.0000 YZ= -42.3732 ZZ= -6.5229 Eigenvalues: -60.5426 10.8296 181.7067 6 C Isotropic = 20.8527 Anisotropy = 131.3215 XX= 108.4004 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 25.6289 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -71.4711 Eigenvalues: -71.4711 25.6289 108.4004 7 N Isotropic = -176.5803 Anisotropy = 353.2278 XX= 58.9049 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -241.7793 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -346.8664 Eigenvalues: -346.8664 -241.7793 58.9049 8 O Isotropic = -347.7415 Anisotropy = 824.7297 XX= 202.0782 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -718.9166 ZY= 86.8041 XZ= 0.0000 YZ= -154.7984 ZZ= -526.3863 Eigenvalues: -724.7435 -520.5594 202.0782 9 O Isotropic = -347.7415 Anisotropy = 824.7297 XX= 202.0782 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -718.9166 ZY= -86.8041 XZ= 0.0000 YZ= 154.7984 ZZ= -526.3863 Eigenvalues: -724.7435 -520.5594 202.0782 10 H Isotropic = 22.6629 Anisotropy = 6.4518 XX= 19.0942 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 22.2636 ZY= -0.8657 XZ= 0.0000 YZ= -1.6372 ZZ= 26.6310 Eigenvalues: 19.0942 21.9304 26.9642 11 H Isotropic = 23.5510 Anisotropy = 10.5310 XX= 19.0553 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.2157 ZY= 4.2760 XZ= 0.0000 YZ= 4.7293 ZZ= 27.3819 Eigenvalues: 19.0553 21.0260 30.5717 12 Br Isotropic = 2056.2548 Anisotropy = 1196.0500 XX= 1681.8619 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 1633.2810 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 2853.6214 Eigenvalues: 1633.2810 1681.8619 2853.6214 13 H Isotropic = 23.5510 Anisotropy = 10.5310 XX= 19.0553 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.2157 ZY= -4.2760 XZ= 0.0000 YZ= -4.7293 ZZ= 27.3819 Eigenvalues: 19.0553 21.0260 30.5717 14 H Isotropic = 22.6629 Anisotropy = 6.4518 XX= 19.0942 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 22.2636 ZY= 0.8657 XZ= 0.0000 YZ= 1.6372 ZZ= 26.6310 Eigenvalues: 19.0942 21.9304 26.9642 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (B1) (B2) (B2) (A1) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (B2) (A2) (B2) (A2) (B1) Virtual (B1) (A2) (A1) (B1) (A1) (B2) (A1) (B2) (B1) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B1) (A1) (B2) (B2) (A2) (A1) (B1) (B2) (A2) (A1) (A1) (A1) (B1) (B2) (B1) (A1) (B2) (A2) (B2) (A1) (A1) (B2) (B1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (B1) (A2) (A1) (B2) (A1) (A2) (A1) (A2) (B2) (A1) (B2) (B1) (A2) (A1) (B2) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (B2) (A1) (A2) (B2) (B1) (A1) (B1) (A1) (A2) (A1) (B2) (B1) (A1) (B2) (A2) (A1) (B1) (B2) (B2) (A2) (B2) (B1) (A1) (B2) (A1) (A2) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (A2) (B1) (B2) (A1) (B2) (A2) (A1) (A1) (B2) (B2) (B1) (A2) (B1) (A1) (A1) (A2) (B1) (B2) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (B1) (A1) (B2) (B1) (B2) (A2) (A1) (A2) (B1) (B1) (B2) (A1) (B2) (A2) (A1) (B2) (A1) (A2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B1) (B2) (B1) (B2) (A1) (A2) (B1) (A1) (B1) (A2) (B2) (A1) (A2) (B1) (B2) (A1) (B2) (B1) (A2) (A1) (B1) (A1) (B2) (B1) (A1) (B2) (A1) (B2) (A2) (A1) (A1) (A2) (A1) (B2) (B1) (A2) (B2) (B1) (A1) (B2) (A2) (B1) (A1) (B2) (B1) (B2) (B2) (A1) (B1) (A2) (A1) (A2) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (A1) (B1) (B1) (A2) (B2) (A2) (B2) (B1) (B2) (A1) (A2) (B2) (A1) (B1) (A1) (B2) (A1) (A2) (A1) (B2) (A2) (B1) (B2) (A1) (B2) (B1) (A2) (A1) (B2) (A1) (A2) (A1) (B2) (B1) (A1) (B1) (B2) (A1) (A1) (B2) (B1) (A1) (A1) (B2) (B2) (A2) (A1) (B1) (A2) (B1) (A2) (B2) (A1) (B1) (B2) (A1) (A1) (B2) (A1) (A2) (B2) (B2) (A1) (A2) (B1) (B2) (B1) (A1) (B2) (B2) (A2) (A1) (A1) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B2) (A1) (A1) (A2) (B1) (A2) (A1) (B2) (B1) (B2) (A1) (B2) (A2) (B1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (B2) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -485.39848 -63.38645 -57.20690 -57.20459 -57.20446 Alpha occ. eigenvalues -- -19.67050 -19.67048 -15.01100 -10.63558 -10.62286 Alpha occ. eigenvalues -- -10.58994 -10.58991 -10.58709 -10.58709 -9.05085 Alpha occ. eigenvalues -- -6.87390 -6.86508 -6.86470 -2.90781 -2.90463 Alpha occ. eigenvalues -- -2.90423 -2.89612 -2.89611 -1.38493 -1.19765 Alpha occ. eigenvalues -- -1.02663 -0.95223 -0.89477 -0.88241 -0.79005 Alpha occ. eigenvalues -- -0.74323 -0.69581 -0.66917 -0.64205 -0.61841 Alpha occ. eigenvalues -- -0.57582 -0.57030 -0.55624 -0.53677 -0.49683 Alpha occ. eigenvalues -- -0.45620 -0.45472 -0.40866 -0.40143 -0.39451 Alpha occ. eigenvalues -- -0.39403 -0.37137 -0.35393 -0.32880 Alpha virt. eigenvalues -- -0.06382 -0.01778 0.01816 0.02512 0.07576 Alpha virt. eigenvalues -- 0.08801 0.10859 0.13713 0.16408 0.17404 Alpha virt. eigenvalues -- 0.18382 0.22137 0.23999 0.24983 0.25122 Alpha virt. eigenvalues -- 0.26732 0.29107 0.30291 0.31387 0.31419 Alpha virt. eigenvalues -- 0.31731 0.31812 0.33708 0.33712 0.35123 Alpha virt. eigenvalues -- 0.36923 0.37094 0.39588 0.39702 0.40858 Alpha virt. eigenvalues -- 0.41067 0.42493 0.43402 0.43969 0.44679 Alpha virt. eigenvalues -- 0.45229 0.48131 0.48662 0.50354 0.50527 Alpha virt. eigenvalues -- 0.51632 0.53156 0.56436 0.56680 0.59621 Alpha virt. eigenvalues -- 0.59772 0.61891 0.62900 0.62975 0.64490 Alpha virt. eigenvalues -- 0.66182 0.67636 0.67724 0.71666 0.72158 Alpha virt. eigenvalues -- 0.72199 0.75185 0.76006 0.76675 0.77090 Alpha virt. eigenvalues -- 0.77558 0.79445 0.82415 0.82867 0.86030 Alpha virt. eigenvalues -- 0.86798 0.87578 0.88217 0.89244 0.90606 Alpha virt. eigenvalues -- 0.93122 0.96897 0.97655 0.99559 1.00615 Alpha virt. eigenvalues -- 1.04877 1.05029 1.05579 1.09119 1.10592 Alpha virt. eigenvalues -- 1.11290 1.11982 1.16364 1.16462 1.18048 Alpha virt. eigenvalues -- 1.21666 1.22804 1.26247 1.29480 1.29975 Alpha virt. eigenvalues -- 1.32233 1.32449 1.32657 1.33911 1.37725 Alpha virt. eigenvalues -- 1.41286 1.42668 1.43304 1.47505 1.48523 Alpha virt. eigenvalues -- 1.48927 1.50028 1.50370 1.51828 1.53448 Alpha virt. eigenvalues -- 1.54607 1.55585 1.56702 1.59458 1.63327 Alpha virt. eigenvalues -- 1.64399 1.68005 1.68729 1.69521 1.71681 Alpha virt. eigenvalues -- 1.71739 1.76383 1.77287 1.79652 1.80870 Alpha virt. eigenvalues -- 1.83078 1.85608 1.88366 1.89311 1.92125 Alpha virt. eigenvalues -- 1.95309 1.95341 1.98574 2.00498 2.01885 Alpha virt. eigenvalues -- 2.02703 2.06851 2.09452 2.12698 2.15560 Alpha virt. eigenvalues -- 2.19607 2.19746 2.21697 2.21800 2.26580 Alpha virt. eigenvalues -- 2.27824 2.28127 2.28537 2.30869 2.36133 Alpha virt. eigenvalues -- 2.36444 2.39627 2.40101 2.41238 2.42346 Alpha virt. eigenvalues -- 2.44790 2.51806 2.52763 2.52795 2.55664 Alpha virt. eigenvalues -- 2.62044 2.63943 2.65653 2.66623 2.68514 Alpha virt. eigenvalues -- 2.69993 2.70473 2.71680 2.76777 2.76974 Alpha virt. eigenvalues -- 2.78629 2.80204 2.80607 2.84022 2.84847 Alpha virt. eigenvalues -- 2.89073 2.89177 2.89943 2.94031 2.96631 Alpha virt. eigenvalues -- 2.97846 3.00057 3.01119 3.02190 3.02785 Alpha virt. eigenvalues -- 3.03945 3.04185 3.04908 3.07481 3.08011 Alpha virt. eigenvalues -- 3.09101 3.11093 3.12878 3.12967 3.15707 Alpha virt. eigenvalues -- 3.17839 3.18229 3.24292 3.27899 3.28878 Alpha virt. eigenvalues -- 3.31528 3.32278 3.32466 3.32608 3.35914 Alpha virt. eigenvalues -- 3.38738 3.39661 3.39935 3.45848 3.48188 Alpha virt. eigenvalues -- 3.48352 3.54249 3.59484 3.61838 3.61887 Alpha virt. eigenvalues -- 3.64973 3.65551 3.69429 3.71246 3.71875 Alpha virt. eigenvalues -- 3.74621 3.74724 3.76689 3.76995 3.78461 Alpha virt. eigenvalues -- 3.79831 3.80671 3.82870 3.86550 3.87610 Alpha virt. eigenvalues -- 3.90215 3.96776 3.98832 3.99160 4.01936 Alpha virt. eigenvalues -- 4.04829 4.04955 4.04966 4.05411 4.07930 Alpha virt. eigenvalues -- 4.10924 4.16974 4.17124 4.17678 4.19360 Alpha virt. eigenvalues -- 4.20074 4.22737 4.24041 4.25616 4.25933 Alpha virt. eigenvalues -- 4.28533 4.30345 4.30419 4.32392 4.35752 Alpha virt. eigenvalues -- 4.43398 4.45253 4.49000 4.54858 4.56636 Alpha virt. eigenvalues -- 4.57982 4.61267 4.63477 4.63543 4.65254 Alpha virt. eigenvalues -- 4.70220 4.72507 4.72866 4.73441 4.79648 Alpha virt. eigenvalues -- 4.80199 4.88564 4.88969 4.93892 4.96563 Alpha virt. eigenvalues -- 4.97364 4.97655 5.06296 5.08891 5.11513 Alpha virt. eigenvalues -- 5.14538 5.15623 5.17169 5.23891 5.23966 Alpha virt. eigenvalues -- 5.27892 5.34160 5.34164 5.39507 5.51024 Alpha virt. eigenvalues -- 5.57622 5.59807 5.64274 5.65723 5.76877 Alpha virt. eigenvalues -- 5.79203 5.89693 5.93724 6.00695 6.23743 Alpha virt. eigenvalues -- 6.24534 6.29187 6.35514 6.40792 6.42614 Alpha virt. eigenvalues -- 6.47630 6.52013 6.55010 6.67568 6.85113 Alpha virt. eigenvalues -- 6.87626 6.89648 7.06867 7.18460 7.19609 Alpha virt. eigenvalues -- 7.57264 8.18968 9.49386 11.86389 12.42056 Alpha virt. eigenvalues -- 12.63242 13.12626 13.81909 13.88090 15.35936 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.946475 0.469088 -0.055584 -0.027936 -0.045408 0.435851 2 C 0.469088 5.031894 0.445729 -0.060174 -0.027936 -0.078365 3 C -0.055584 0.445729 5.025473 0.445729 -0.055584 -0.040428 4 C -0.027936 -0.060174 0.445729 5.031894 0.469088 -0.078365 5 C -0.045408 -0.027936 -0.055584 0.469088 4.946475 0.435851 6 C 0.435851 -0.078365 -0.040428 -0.078365 0.435851 5.296671 7 N -0.054622 0.003280 -0.000570 0.003280 -0.054622 0.323660 8 O 0.005915 0.000037 -0.000069 0.003077 0.035859 -0.139962 9 O 0.035859 0.003077 -0.000069 0.000037 0.005915 -0.139962 10 H 0.004372 -0.001111 0.005762 -0.036173 0.420390 -0.041390 11 H -0.001546 0.007415 -0.054030 0.425468 -0.037567 0.007487 12 Br 0.008416 -0.080058 0.322763 -0.080058 0.008416 -0.001545 13 H -0.037567 0.425468 -0.054030 0.007415 -0.001546 0.007487 14 H 0.420390 -0.036173 0.005762 -0.001111 0.004372 -0.041390 7 8 9 10 11 12 1 C -0.054622 0.005915 0.035859 0.004372 -0.001546 0.008416 2 C 0.003280 0.000037 0.003077 -0.001111 0.007415 -0.080058 3 C -0.000570 -0.000069 -0.000069 0.005762 -0.054030 0.322763 4 C 0.003280 0.003077 0.000037 -0.036173 0.425468 -0.080058 5 C -0.054622 0.035859 0.005915 0.420390 -0.037567 0.008416 6 C 0.323660 -0.139962 -0.139962 -0.041390 0.007487 -0.001545 7 N 5.435501 0.502700 0.502700 -0.008070 -0.000099 0.000015 8 O 0.502700 7.971004 -0.116507 0.016874 -0.000019 0.000000 9 O 0.502700 -0.116507 7.971004 0.000640 0.000007 0.000000 10 H -0.008070 0.016874 0.000640 0.486611 -0.006843 -0.000156 11 H -0.000099 -0.000019 0.000007 -0.006843 0.515311 -0.002430 12 Br 0.000015 0.000000 0.000000 -0.000156 -0.002430 34.887298 13 H -0.000099 0.000007 -0.000019 0.000038 -0.000100 -0.002430 14 H -0.008070 0.000640 0.016874 -0.000223 0.000038 -0.000156 13 14 1 C -0.037567 0.420390 2 C 0.425468 -0.036173 3 C -0.054030 0.005762 4 C 0.007415 -0.001111 5 C -0.001546 0.004372 6 C 0.007487 -0.041390 7 N -0.000099 -0.008070 8 O 0.000007 0.000640 9 O -0.000019 0.016874 10 H 0.000038 -0.000223 11 H -0.000100 0.000038 12 Br -0.002430 -0.000156 13 H 0.515311 -0.006843 14 H -0.006843 0.486611 Mulliken charges: 1 1 C -0.103704 2 C -0.102170 3 C 0.009147 4 C -0.102170 5 C -0.103704 6 C 0.054397 7 N 0.355017 8 O -0.279556 9 O -0.279556 10 H 0.159280 11 H 0.146909 12 Br -0.060078 13 H 0.146909 14 H 0.159280 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.055575 2 C 0.044739 3 C 0.009147 4 C 0.044739 5 C 0.055575 6 C 0.054397 7 N 0.355017 8 O -0.279556 9 O -0.279556 12 Br -0.060078 Electronic spatial extent (au): = 2690.9698 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 3.0776 Tot= 3.0776 Quadrupole moment (field-independent basis, Debye-Ang): XX= -70.3910 YY= -64.0599 ZZ= -88.2426 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.8402 YY= 10.1712 ZZ= -14.0114 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 154.8485 XYY= 0.0000 XXY= 0.0000 XXZ= 15.8669 XZZ= 0.0000 YZZ= 0.0000 YYZ= 27.5167 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -75.0039 YYYY= -357.1707 ZZZZ= -2816.6726 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -84.0421 XXZZ= -418.1318 YYZZ= -514.5021 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.040227145158D+02 E-N=-8.578338475523D+03 KE= 3.005033912324D+03 Symmetry A1 KE= 2.128002025237D+03 Symmetry A2 KE= 5.009489948572D+01 Symmetry B1 KE= 3.409748267649D+02 Symmetry B2 KE= 4.859621608362D+02 1\1\GINC-COMPUTE-0-44\SP\RM062X\CC-pVTZ\C6H4Br1N1O2\ZDANOVSKAIA\25-May -2016\0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\5. p-Br Nitrobenzene NMR\\0,1\C\C,1,1.3843602\C,2,1.3878749,1,119.26175\C,3,1.3878749,2,121 .54288,1,0.,0\C,4,1.3843602,3,119.26175,2,0.,0\C,1,1.3828196,2,118.749 86,3,0.,0\N,6,1.474876,1,118.78305,2,180.,0\O,7,1.2098308,6,117.44333, 1,180.,0\O,7,1.2098308,6,117.44333,1,0.,0\H,5,1.0791559,4,121.53093,3, 180.,0\H,4,1.0797838,3,120.16464,2,180.,0\Br,3,1.887658,2,119.22856,1, 180.,0\H,2,1.0797838,1,120.57361,6,180.,0\H,1,1.0791559,2,121.53093,3, 180.,0\\Version=EM64L-G09RevD.01\State=1-A1\HF=-3010.3747107\RMSD=9.46 6e-09\Dipole=-0.0007014,0.,1.2108142\Quadrupole=7.5620633,2.855075,-10 .4171383,0.,0.0104154,0.\PG=C02V [C2(N1C1C1Br1),SGV(C4H4O2)]\\@ WHEN IT COMES TO CASH FLOW, IT SEEMS LIKE THE TIDE IS ALWAYS GOING OUT. Job cpu time: 0 days 0 hours 30 minutes 3.6 seconds. File lengths (MBytes): RWF= 84 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 17:57:08 2016.