Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567416/Gau-14725.inp" -scrdir="/scratch/webmo-5066/567416/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 14726. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ---------------------------- 5. o-Br Nitrobenzene Opt+Vib ---------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 N 6 B6 1 A5 2 D4 0 O 7 B7 6 A6 1 D5 0 O 7 B8 6 A7 1 D6 0 H 5 B9 4 A8 3 D7 0 H 4 B10 3 A9 2 D8 0 H 3 B11 2 A10 1 D9 0 H 2 B12 1 A11 6 D10 0 Br 1 B13 2 A12 3 D11 0 Variables: B1 1.38943 B2 1.38505 B3 1.38762 B4 1.38234 B5 1.3891 B6 1.47527 B7 1.21093 B8 1.20663 B9 1.0801 B10 1.08026 B11 1.08112 B12 1.08014 B13 1.88318 A1 120.54133 A2 120.50664 A3 119.47754 A4 118.27404 A5 122.52272 A6 116.56412 A7 117.73454 A8 121.84503 A9 120.57493 A10 119.24349 A11 118.84937 A12 117.82781 D1 1.19839 D2 -0.02984 D3 -0.9701 D4 179.07494 D5 141.84291 D6 -39.96907 D7 178.87877 D8 179.68859 D9 -179.28842 D10 178.82689 D11 -178.13693 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.389432 3 6 0 1.192888 0.000000 2.093256 4 6 0 2.406962 0.025004 1.421764 5 6 0 2.419514 0.049411 0.039700 6 6 0 1.223190 0.020712 -0.658000 7 7 0 1.332887 0.002484 -2.129071 8 8 0 2.205758 0.686456 -2.615531 9 8 0 0.575504 -0.711161 -2.739847 10 1 0 3.341746 0.087255 -0.521253 11 1 0 3.337940 0.030085 1.969677 12 1 0 1.168438 -0.011715 3.174041 13 1 0 -0.946080 0.003352 1.910609 14 35 0 -1.664522 0.054144 -0.879100 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.389432 0.000000 3 C 2.409295 1.385045 0.000000 4 C 2.795622 2.407309 1.387625 0.000000 5 C 2.420344 2.770968 2.392518 1.382336 0.000000 6 C 1.389096 2.385079 2.751501 2.393063 1.385207 7 N 2.511880 3.762507 4.224649 3.709794 2.426217 8 O 3.489641 4.623453 4.865162 4.096065 2.738936 9 O 2.888549 4.229408 4.924002 4.605994 3.421217 10 H 3.383281 3.850403 3.385390 2.157085 1.080099 11 H 3.875871 3.388132 2.148820 1.080257 2.137450 12 H 3.382295 2.133123 1.081125 2.146105 3.375354 13 H 2.132019 1.080141 2.146755 3.388559 3.850928 14 Br 1.883184 2.814214 4.123424 4.676730 4.186116 6 7 8 9 10 6 C 0.000000 7 N 1.475269 0.000000 8 O 2.289232 1.210935 0.000000 9 O 2.299831 1.206634 2.150934 0.000000 10 H 2.124007 2.574447 2.456727 3.634793 0.000000 11 H 3.372972 4.562975 4.768311 5.510001 2.491590 12 H 3.832569 5.305680 5.923058 5.984552 4.288154 13 H 3.362111 4.638180 5.557577 4.944946 4.930158 14 Br 2.896357 3.248008 4.288832 3.010944 5.019150 11 12 13 14 11 H 0.000000 12 H 2.481729 0.000000 13 H 4.284511 2.463265 0.000000 14 Br 5.756799 4.945498 2.881183 0.000000 Stoichiometry C6H4BrNO2 Framework group C1[X(C6H4BrNO2)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.004937 -0.623076 0.019001 2 6 0 -0.555128 -1.898930 0.021548 3 6 0 -1.928792 -2.072973 0.054812 4 6 0 -2.777934 -0.975512 0.061128 5 6 0 -2.242801 0.298763 0.034533 6 6 0 -0.867681 0.465566 0.029876 7 7 0 -0.385392 1.859651 0.048341 8 8 0 -1.011308 2.658012 -0.612879 9 8 0 0.569756 2.114287 0.740308 10 1 0 -2.868156 1.179300 0.020393 11 1 0 -3.849580 -1.110030 0.082007 12 1 0 -2.334025 -3.075194 0.067849 13 1 0 0.106824 -2.752015 -0.006206 14 35 0 1.869678 -0.474315 -0.081350 --------------------------------------------------------------------- Rotational constants (GHZ): 1.2669991 0.9148437 0.5490875 Standard basis: CC-pVTZ (5D, 7F) There are 424 symmetry adapted cartesian basis functions of A symmetry. There are 369 symmetry adapted basis functions of A symmetry. 369 basis functions, 733 primitive gaussians, 424 cartesian basis functions 49 alpha electrons 49 beta electrons nuclear repulsion energy 755.8116033982 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. NBasis= 369 RedAO= T EigKep= 3.14D-05 NBF= 369 NBsUse= 369 1.00D-06 EigRej= -1.00D+00 NBFU= 369 ExpMin= 1.02D-01 ExpMax= 1.06D+07 ExpMxC= 1.21D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -3010.36333887 A.U. after 17 cycles NFock= 17 Conv=0.64D-08 -V/T= 2.0018 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 369 NBasis= 369 NAE= 49 NBE= 49 NFC= 0 NFV= 0 NROrb= 369 NOA= 49 NOB= 49 NVA= 320 NVB= 320 **** Warning!!: The largest alpha MO coefficient is 0.27253574D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 14 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 5.23D-13 3.33D-08 XBig12= 1.08D+01 8.99D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 5.23D-13 3.33D-08 XBig12= 1.41D-01 1.60D-01. 3 vectors produced by pass 2 Test12= 5.23D-13 3.33D-08 XBig12= 2.16D-03 1.73D-02. 3 vectors produced by pass 3 Test12= 5.23D-13 3.33D-08 XBig12= 3.25D-05 1.19D-03. 3 vectors produced by pass 4 Test12= 5.23D-13 3.33D-08 XBig12= 5.44D-07 2.57D-04. 3 vectors produced by pass 5 Test12= 5.23D-13 3.33D-08 XBig12= 9.28D-09 1.93D-05. 3 vectors produced by pass 6 Test12= 5.23D-13 3.33D-08 XBig12= 9.76D-11 2.65D-06. 3 vectors produced by pass 7 Test12= 5.23D-13 3.33D-08 XBig12= 8.74D-13 1.70D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 35.7524 Anisotropy = 158.1550 XX= -52.0557 YX= 14.6400 ZX= 9.9865 XY= -16.2125 YY= 18.2210 ZY= -2.5867 XZ= -1.3185 YZ= 2.4353 ZZ= 141.0917 Eigenvalues: -52.1616 18.2297 141.1890 2 C Isotropic = 32.0877 Anisotropy = 181.5043 XX= -9.8939 YX= 51.0932 ZX= 4.4067 XY= 50.6160 YY= -46.8306 ZY= -3.1201 XZ= 2.8155 YZ= -3.2442 ZZ= 152.9876 Eigenvalues: -82.5594 25.7319 153.0906 3 C Isotropic = 34.9452 Anisotropy = 215.1316 XX= -0.4054 YX= -43.5604 ZX= 3.8827 XY= -37.8237 YY= -73.0598 ZY= 1.8031 XZ= 2.7827 YZ= -2.0756 ZZ= 178.3008 Eigenvalues: -91.2865 17.7558 178.3662 4 C Isotropic = 40.6312 Anisotropy = 210.6146 XX= -77.3415 YX= -15.0256 ZX= 4.6919 XY= -10.4557 YY= 18.3127 ZY= 2.0036 XZ= 5.7905 YZ= 1.3361 ZZ= 180.9223 Eigenvalues: -79.1221 19.9747 181.0409 5 C Isotropic = 40.8963 Anisotropy = 199.4983 XX= -16.9821 YX= 33.0127 ZX= 0.4723 XY= 46.3656 YY= -34.1816 ZY= 0.3742 XZ= 0.7714 YZ= 5.0668 ZZ= 173.8525 Eigenvalues: -66.2044 14.9980 173.8951 6 C Isotropic = 14.4467 Anisotropy = 132.9615 XX= 4.3611 YX= -35.6795 ZX= -0.5058 XY= -26.2122 YY= -62.0869 ZY= -2.8152 XZ= 27.1257 YZ= -0.7324 ZZ= 101.0660 Eigenvalues: -74.3263 14.5787 103.0877 7 N Isotropic = -184.9855 Anisotropy = 356.7532 XX= -139.7390 YX= -65.2826 ZX= -138.9074 XY= -71.0044 YY= -329.1361 ZY= 33.4082 XZ= -157.8788 YZ= 49.2063 ZZ= -86.0814 Eigenvalues: -351.3413 -256.4652 52.8500 8 O Isotropic = -386.3932 Anisotropy = 808.1608 XX= -378.2358 YX= -123.0594 ZX= -380.8304 XY= 80.8303 YY= -551.0369 ZY= 217.0388 XZ= -467.4114 YZ= 97.9970 ZZ= -229.9070 Eigenvalues: -770.9291 -540.6313 152.3806 9 O Isotropic = -408.6440 Anisotropy = 878.3617 XX= -457.5819 YX= 21.0487 ZX= -479.5755 XY= -205.7954 YY= -527.7325 ZY= 8.8003 XZ= -489.8988 YZ= 211.4346 ZZ= -240.6176 Eigenvalues: -845.8632 -556.9993 176.9305 10 H Isotropic = 23.0541 Anisotropy = 6.3930 XX= 25.3587 YX= 2.8888 ZX= 0.4024 XY= 2.3639 YY= 23.6631 ZY= -0.4812 XZ= -0.6040 YZ= -1.1714 ZZ= 20.1404 Eigenvalues: 19.8969 21.9493 27.3161 11 H Isotropic = 23.6785 Anisotropy = 5.5178 XX= 23.0991 YX= -0.4248 ZX= 0.1360 XY= -0.3977 YY= 27.3141 ZY= -0.0972 XZ= 0.0330 YZ= -0.1756 ZZ= 20.6221 Eigenvalues: 20.6170 23.0614 27.3570 12 H Isotropic = 23.6761 Anisotropy = 6.1598 XX= 27.2318 YX= -1.8139 ZX= -0.0030 XY= -1.4617 YY= 22.9121 ZY= -0.0177 XZ= -0.1576 YZ= -0.2762 ZZ= 20.8844 Eigenvalues: 20.8661 22.3796 27.7827 13 H Isotropic = 23.4554 Anisotropy = 11.0120 XX= 26.1809 YX= 5.4988 ZX= -0.0350 XY= 4.5811 YY= 25.2880 ZY= -0.2101 XZ= -0.2883 YZ= 0.0445 ZZ= 18.8973 Eigenvalues: 18.8934 20.6760 30.7967 14 Br Isotropic = 2070.1971 Anisotropy = 1108.0991 XX= 2786.3728 YX= 40.4708 ZX= -151.4489 XY= 76.6045 YY= 1617.0741 ZY= -3.4600 XZ= -128.8500 YZ= -7.3965 ZZ= 1807.1445 Eigenvalues: 1614.1370 1787.5246 2808.9299 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -485.39423 -63.38207 -57.20266 -57.20020 -57.19999 Alpha occ. eigenvalues -- -19.67157 -19.66930 -15.01031 -10.63799 -10.62897 Alpha occ. eigenvalues -- -10.58691 -10.58357 -10.58260 -10.57910 -9.04647 Alpha occ. eigenvalues -- -6.86994 -6.86059 -6.85991 -2.90385 -2.90056 Alpha occ. eigenvalues -- -2.89988 -2.89127 -2.89126 -1.38496 -1.19798 Alpha occ. eigenvalues -- -1.02573 -0.93139 -0.92453 -0.85353 -0.80453 Alpha occ. eigenvalues -- -0.73186 -0.69970 -0.65884 -0.63939 -0.61548 Alpha occ. eigenvalues -- -0.59756 -0.56342 -0.54603 -0.51441 -0.49648 Alpha occ. eigenvalues -- -0.46911 -0.44391 -0.40977 -0.40081 -0.39931 Alpha occ. eigenvalues -- -0.39061 -0.35635 -0.34833 -0.32339 Alpha virt. eigenvalues -- -0.05267 -0.01570 0.01434 0.02037 0.06809 Alpha virt. eigenvalues -- 0.08866 0.11386 0.12616 0.15689 0.17030 Alpha virt. eigenvalues -- 0.20757 0.21920 0.23031 0.26074 0.27146 Alpha virt. eigenvalues -- 0.27396 0.27815 0.29436 0.30314 0.31693 Alpha virt. eigenvalues -- 0.31872 0.33378 0.34160 0.34658 0.35206 Alpha virt. eigenvalues -- 0.36432 0.37934 0.38979 0.40388 0.41123 Alpha virt. eigenvalues -- 0.41606 0.41868 0.43531 0.44818 0.45793 Alpha virt. eigenvalues -- 0.46648 0.47534 0.49014 0.50856 0.51135 Alpha virt. eigenvalues -- 0.53187 0.54918 0.55730 0.57328 0.58507 Alpha virt. eigenvalues -- 0.59272 0.60573 0.62404 0.63066 0.64202 Alpha virt. eigenvalues -- 0.65886 0.67961 0.69085 0.70640 0.71625 Alpha virt. eigenvalues -- 0.73160 0.74176 0.75330 0.75720 0.78154 Alpha virt. eigenvalues -- 0.79194 0.80679 0.81542 0.84215 0.85319 Alpha virt. eigenvalues -- 0.86240 0.86819 0.88098 0.89433 0.92777 Alpha virt. eigenvalues -- 0.94180 0.95596 0.96731 0.99728 1.01080 Alpha virt. eigenvalues -- 1.02242 1.05504 1.06280 1.08567 1.09670 Alpha virt. eigenvalues -- 1.14232 1.15316 1.16759 1.19594 1.22094 Alpha virt. eigenvalues -- 1.23467 1.24775 1.26338 1.27017 1.29722 Alpha virt. eigenvalues -- 1.30364 1.33208 1.33585 1.37052 1.39228 Alpha virt. eigenvalues -- 1.40314 1.42966 1.44138 1.44599 1.46107 Alpha virt. eigenvalues -- 1.47279 1.48836 1.49708 1.50563 1.52223 Alpha virt. eigenvalues -- 1.53785 1.55876 1.58595 1.60484 1.62968 Alpha virt. eigenvalues -- 1.64287 1.65555 1.66926 1.68431 1.72409 Alpha virt. eigenvalues -- 1.74335 1.77310 1.78557 1.82660 1.84592 Alpha virt. eigenvalues -- 1.85212 1.87713 1.88976 1.92002 1.92076 Alpha virt. eigenvalues -- 1.96452 1.97534 1.99826 2.01468 2.01902 Alpha virt. eigenvalues -- 2.03536 2.08210 2.14016 2.15243 2.16421 Alpha virt. eigenvalues -- 2.17441 2.18287 2.22367 2.23454 2.24174 Alpha virt. eigenvalues -- 2.25711 2.28093 2.30234 2.31849 2.37488 Alpha virt. eigenvalues -- 2.38842 2.39181 2.41600 2.42898 2.44310 Alpha virt. eigenvalues -- 2.45308 2.51511 2.52180 2.52427 2.56383 Alpha virt. eigenvalues -- 2.58809 2.63357 2.64276 2.65839 2.67837 Alpha virt. eigenvalues -- 2.69302 2.71110 2.73130 2.73587 2.76621 Alpha virt. eigenvalues -- 2.78291 2.79447 2.81617 2.84107 2.87469 Alpha virt. eigenvalues -- 2.89164 2.91698 2.92393 2.95235 2.96471 Alpha virt. eigenvalues -- 2.97269 2.99094 3.00120 3.00764 3.01721 Alpha virt. eigenvalues -- 3.03813 3.05835 3.08130 3.08527 3.09949 Alpha virt. eigenvalues -- 3.10725 3.11659 3.12679 3.14006 3.14775 Alpha virt. eigenvalues -- 3.18234 3.22381 3.23595 3.26658 3.27762 Alpha virt. eigenvalues -- 3.30294 3.31723 3.32879 3.33469 3.34373 Alpha virt. eigenvalues -- 3.36246 3.37628 3.40114 3.41895 3.47034 Alpha virt. eigenvalues -- 3.51761 3.59164 3.59990 3.60678 3.61201 Alpha virt. eigenvalues -- 3.64450 3.67494 3.70325 3.70898 3.73162 Alpha virt. eigenvalues -- 3.74385 3.75152 3.76343 3.78161 3.79731 Alpha virt. eigenvalues -- 3.79968 3.84034 3.84396 3.86564 3.88904 Alpha virt. eigenvalues -- 3.90613 3.93665 3.97799 3.98204 4.00272 Alpha virt. eigenvalues -- 4.03796 4.04357 4.05823 4.07282 4.09627 Alpha virt. eigenvalues -- 4.10735 4.13378 4.15925 4.17546 4.19087 Alpha virt. eigenvalues -- 4.20941 4.22465 4.23343 4.25678 4.26712 Alpha virt. eigenvalues -- 4.27188 4.28612 4.29576 4.33507 4.38378 Alpha virt. eigenvalues -- 4.42248 4.46940 4.49502 4.52145 4.55105 Alpha virt. eigenvalues -- 4.57414 4.58648 4.62411 4.65001 4.65510 Alpha virt. eigenvalues -- 4.66346 4.71039 4.72507 4.74878 4.77901 Alpha virt. eigenvalues -- 4.81870 4.84473 4.90239 4.92684 4.94042 Alpha virt. eigenvalues -- 4.95870 4.99633 5.02867 5.07128 5.14366 Alpha virt. eigenvalues -- 5.15880 5.16773 5.18681 5.21511 5.26931 Alpha virt. eigenvalues -- 5.28529 5.31755 5.36095 5.39330 5.44573 Alpha virt. eigenvalues -- 5.53074 5.59634 5.61510 5.65727 5.74630 Alpha virt. eigenvalues -- 5.80675 5.92019 5.92939 6.03836 6.19786 Alpha virt. eigenvalues -- 6.27795 6.33478 6.34877 6.36467 6.40035 Alpha virt. eigenvalues -- 6.49213 6.59039 6.59839 6.64101 6.81831 Alpha virt. eigenvalues -- 6.85823 6.89928 7.04733 7.11740 7.20175 Alpha virt. eigenvalues -- 7.47260 8.02494 9.40264 11.96132 12.34736 Alpha virt. eigenvalues -- 12.77497 12.81893 13.13158 13.93960 15.39386 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.130818 0.432577 -0.048721 -0.035394 -0.023281 0.296868 2 C 0.432577 5.019411 0.487202 -0.061855 -0.029258 -0.054592 3 C -0.048721 0.487202 4.893428 0.487126 -0.062102 -0.032904 4 C -0.035394 -0.061855 0.487126 4.956158 0.471428 -0.075192 5 C -0.023281 -0.029258 -0.062102 0.471428 4.976982 0.384892 6 C 0.296868 -0.054592 -0.032904 -0.075192 0.384892 5.454695 7 N -0.028087 0.004452 -0.000360 0.005254 -0.026562 0.208953 8 O 0.004538 -0.000039 -0.000016 0.001445 0.017351 -0.096891 9 O -0.000976 0.002219 -0.000135 -0.000192 0.000614 -0.055859 10 H 0.006933 -0.000923 0.005901 -0.033995 0.428624 -0.060341 11 H -0.001803 0.006990 -0.051535 0.436286 -0.048947 0.009175 12 H 0.008949 -0.051679 0.435644 -0.050633 0.008042 -0.002498 13 H -0.060125 0.425624 -0.039834 0.005637 -0.001168 0.011196 14 Br 0.339304 -0.081603 0.006289 -0.000117 0.004193 -0.078901 7 8 9 10 11 12 1 C -0.028087 0.004538 -0.000976 0.006933 -0.001803 0.008949 2 C 0.004452 -0.000039 0.002219 -0.000923 0.006990 -0.051679 3 C -0.000360 -0.000016 -0.000135 0.005901 -0.051535 0.435644 4 C 0.005254 0.001445 -0.000192 -0.033995 0.436286 -0.050633 5 C -0.026562 0.017351 0.000614 0.428624 -0.048947 0.008042 6 C 0.208953 -0.096891 -0.055859 -0.060341 0.009175 -0.002498 7 N 5.583933 0.464274 0.452557 -0.004597 -0.000146 0.000011 8 O 0.464274 7.983379 -0.113395 0.013411 -0.000017 -0.000001 9 O 0.452557 -0.113395 7.984996 0.000256 0.000010 -0.000002 10 H -0.004597 0.013411 0.000256 0.508078 -0.007953 -0.000144 11 H -0.000146 -0.000017 0.000010 -0.007953 0.546935 -0.007432 12 H 0.000011 -0.000001 -0.000002 -0.000144 -0.007432 0.550252 13 H -0.000113 0.000008 0.000069 0.000037 -0.000185 -0.007643 14 Br -0.001246 0.000296 -0.014738 -0.000207 0.000047 -0.000326 13 14 1 C -0.060125 0.339304 2 C 0.425624 -0.081603 3 C -0.039834 0.006289 4 C 0.005637 -0.000117 5 C -0.001168 0.004193 6 C 0.011196 -0.078901 7 N -0.000113 -0.001246 8 O 0.000008 0.000296 9 O 0.000069 -0.014738 10 H 0.000037 -0.000207 11 H -0.000185 0.000047 12 H -0.007643 -0.000326 13 H 0.520931 0.002185 14 Br 0.002185 34.845595 Mulliken charges: 1 1 C -0.021600 2 C -0.098525 3 C -0.079984 4 C -0.105955 5 C -0.100808 6 C 0.091397 7 N 0.341676 8 O -0.274344 9 O -0.255425 10 H 0.144920 11 H 0.118574 12 H 0.117461 13 H 0.143383 14 Br -0.020771 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.021600 2 C 0.044858 3 C 0.037476 4 C 0.012620 5 C 0.044113 6 C 0.091397 7 N 0.341676 8 O -0.274344 9 O -0.255425 14 Br -0.020771 Electronic spatial extent (au): = 1854.9608 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -2.5571 Y= -4.0919 Z= 0.0668 Tot= 4.8256 Quadrupole moment (field-independent basis, Debye-Ang): XX= -60.3699 YY= -71.8933 ZZ= -72.2592 XY= 2.2762 XZ= -2.1661 YZ= 0.4797 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.8042 YY= -3.7192 ZZ= -4.0851 XY= 2.2762 XZ= -2.1661 YZ= 0.4797 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 36.4920 YYY= -40.1038 ZZZ= -2.3744 XYY= 12.6841 XXY= -5.9827 XXZ= 0.6256 XZZ= 23.9198 YZZ= 3.4588 YYZ= 2.3504 XYZ= -4.5515 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1007.2277 YYYY= -976.3985 ZZZZ= -107.4688 XXXY= -14.8236 XXXZ= -6.5304 YYYX= 0.9026 YYYZ= 9.8657 ZZZX= -1.0210 ZZZY= 1.7462 XXYY= -334.1561 XXZZ= -225.3643 YYZZ= -188.5136 XXYZ= 2.3081 YYXZ= -12.5158 ZZXY= -15.6891 N-N= 7.558116033982D+02 E-N=-8.682165240626D+03 KE= 3.005015302856D+03 1\1\GINC-COMPUTE-0-14\SP\RM062X\CC-pVTZ\C6H4Br1N1O2\ZDANOVSKAIA\25-May -2016\0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\5. o-Br Nitrobenzene Opt+Vib\\0,1\C\C,1,1.389432\C,2,1.3850451,1,120.54133\C,3,1.3876248,2, 120.50664,1,1.1983867,0\C,4,1.3823359,3,119.47754,2,-0.0298358,0\C,1,1 .3890957,2,118.27404,3,-0.9700977,0\N,6,1.4752686,1,122.52272,2,179.07 494,0\O,7,1.2109348,6,116.56412,1,141.84291,0\O,7,1.206634,6,117.73454 ,1,-39.969071,0\H,5,1.0800992,4,121.84503,3,178.87877,0\H,4,1.0802573, 3,120.57493,2,179.68859,0\H,3,1.0811247,2,119.24349,1,-179.28842,0\H,2 ,1.0801411,1,118.84937,6,178.82689,0\Br,1,1.8831838,2,117.82781,3,-178 .13693,0\\Version=EM64L-G09RevD.01\State=1-A\HF=-3010.3633389\RMSD=6.4 05e-09\Dipole=0.286819,-0.0151551,1.8766802\Quadrupole=3.3100708,-3.12 01677,-0.1899031,-1.4419987,4.2863881,-0.1901687\PG=C01 [X(C6H4Br1N1O2 )]\\@ TRUTH, IN SCIENCE, CAN BE DEFINED AS THE WORKING HYPOTHESIS BEST FITTED TO OPEN THE WAY TO THE NEXT BETTER ONE. -- KONRAD LORENZ Job cpu time: 0 days 0 hours 57 minutes 2.5 seconds. File lengths (MBytes): RWF= 82 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 18:10:58 2016.