Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567420/Gau-10300.inp" -scrdir="/scratch/webmo-5066/567420/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 10301. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. ------------------------------------------- #N M062X/cc-pVTZ OPT FREQ Geom=Connectivity ------------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,71=1,74=-55/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,71=1,74=-55/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------- 3. NO2(+1) ---------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 N O 1 B1 O 1 B2 2 A1 Variables: B1 1.258 B2 1.258 A1 180. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.258 estimate D2E/DX2 ! ! R2 R(1,3) 1.258 estimate D2E/DX2 ! ! A1 L(2,1,3,-1,-1) 180.0 estimate D2E/DX2 ! ! A2 L(2,1,3,-2,-2) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.258000 3 8 0 0.000000 0.000000 -1.258000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.258000 0.000000 3 O 1.258000 2.516000 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.258000 3 8 0 0.000000 0.000000 -1.258000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 9.9826074 9.9826074 Standard basis: CC-pVTZ (5D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 5 symmetry adapted cartesian basis functions of B1G symmetry. There are 10 symmetry adapted cartesian basis functions of B2G symmetry. There are 10 symmetry adapted cartesian basis functions of B3G symmetry. There are 4 symmetry adapted cartesian basis functions of AU symmetry. There are 22 symmetry adapted cartesian basis functions of B1U symmetry. There are 14 symmetry adapted cartesian basis functions of B2U symmetry. There are 14 symmetry adapted cartesian basis functions of B3U symmetry. There are 21 symmetry adapted basis functions of AG symmetry. There are 5 symmetry adapted basis functions of B1G symmetry. There are 9 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 4 symmetry adapted basis functions of AU symmetry. There are 18 symmetry adapted basis functions of B1U symmetry. There are 12 symmetry adapted basis functions of B2U symmetry. There are 12 symmetry adapted basis functions of B3U symmetry. 90 basis functions, 156 primitive gaussians, 105 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 60.5735437496 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 90 RedAO= T EigKep= 3.99D-03 NBF= 21 5 9 9 4 18 12 12 NBsUse= 90 1.00D-06 EigRej= -1.00D+00 NBFU= 21 5 9 9 4 18 12 12 ExpMin= 1.72D-01 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (PIU) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (DLTU) (DLTU) (DLTG) (DLTG) (SGU) (PIU) (PIU) (SGG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PIG) (PIG) (SGG) (PHIU) (PHIU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGU) (SGU) (PHIG) (PHIG) (PHIU) (PHIU) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (PIU) (PIU) (SGG) (SGU) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGG) (SGU) The electronic state of the initial guess is 1-SGG. Keep R1 ints in memory in symmetry-blocked form, NReq=10434542. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -204.635162839 A.U. after 12 cycles NFock= 12 Conv=0.96D-08 -V/T= 2.0102 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (PIU) (PIU) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (DLTU) (DLTU) (DLTG) (DLTG) (SGU) (PIU) (PIU) (SGG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PHIU) (PHIU) (PIG) (PIG) (SGG) (PIU) (PIU) (SGG) (DLTG) (DLTG) (PIG) (PIG) (SGU) (SGU) (PHIG) (PHIG) (PHIU) (PHIU) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (SGU) (SGG) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -20.18157 -20.18153 -15.45405 -1.73167 -1.62379 Alpha occ. eigenvalues -- -1.14667 -1.01327 -0.99390 -0.99390 -0.81304 Alpha occ. eigenvalues -- -0.81304 Alpha virt. eigenvalues -- -0.43219 -0.43219 -0.32387 0.08881 0.11961 Alpha virt. eigenvalues -- 0.16781 0.16787 0.16787 0.31009 0.34641 Alpha virt. eigenvalues -- 0.34641 0.43609 0.47008 0.47008 0.57031 Alpha virt. eigenvalues -- 0.57036 0.76111 0.76111 0.86985 1.11293 Alpha virt. eigenvalues -- 1.11297 1.32461 1.32466 1.38026 1.46743 Alpha virt. eigenvalues -- 1.46743 1.73936 1.84916 1.94156 2.02577 Alpha virt. eigenvalues -- 2.02577 2.48159 2.48159 2.73903 3.26235 Alpha virt. eigenvalues -- 3.26235 3.30981 3.30989 3.36772 3.36772 Alpha virt. eigenvalues -- 3.45834 3.45834 3.50095 3.87646 3.87646 Alpha virt. eigenvalues -- 3.92497 3.94522 3.94538 3.94758 3.94758 Alpha virt. eigenvalues -- 4.14548 4.66578 4.71644 4.71644 4.74512 Alpha virt. eigenvalues -- 4.74512 4.77682 4.77689 5.21232 5.21240 Alpha virt. eigenvalues -- 5.28316 5.28316 5.81426 5.81428 5.82959 Alpha virt. eigenvalues -- 5.82960 5.95049 6.01668 6.01668 6.18247 Alpha virt. eigenvalues -- 6.37379 6.37379 6.37386 6.80155 6.80155 Alpha virt. eigenvalues -- 6.94095 7.51504 11.10616 12.04337 Condensed to atoms (all electrons): 1 2 3 1 N 5.332693 0.491679 0.491679 2 O 0.491679 7.375946 -0.025651 3 O 0.491679 -0.025651 7.375946 Mulliken charges: 1 1 N 0.683948 2 O 0.158026 3 O 0.158026 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.683948 2 O 0.158026 3 O 0.158026 Electronic spatial extent (au): = 117.1818 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -13.3121 YY= -13.3121 ZZ= -9.3674 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.3149 YY= -1.3149 ZZ= 2.6298 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -8.9139 YYYY= -8.9139 ZZZZ= -81.7232 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.9713 XXZZ= -17.4058 YYZZ= -17.4058 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 6.057354374957D+01 E-N=-5.937961789927D+02 KE= 2.025758667617D+02 Symmetry AG KE= 1.143147434836D+02 Symmetry B1G KE= 2.200044344259D-33 Symmetry B2G KE= 5.172155493620D+00 Symmetry B3G KE= 5.172155493620D+00 Symmetry AU KE= 2.398745240196D-33 Symmetry B1U KE= 6.973622554556D+01 Symmetry B2U KE= 4.090293372668D+00 Symmetry B3U KE= 4.090293372668D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 8 0.000000000 0.000000000 -0.227859727 3 8 0.000000000 0.000000000 0.227859727 ------------------------------------------------------------------- Cartesian Forces: Max 0.227859727 RMS 0.107414105 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.227859727 RMS 0.161121158 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 A2 R1 0.80350 R2 0.00000 0.80350 A1 0.00000 0.00000 0.03173 A2 0.00000 0.00000 0.00000 0.03173 ITU= 0 Eigenvalues --- 0.03173 0.03173 0.80350 0.80350 RFO step: Lambda=-1.13268063D-01 EMin= 3.17319266D-02 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.853 Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.00857864 Iteration 2 RMS(Cart)= 0.00857864 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.26D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.37728 -0.22786 0.00000 -0.21213 -0.21213 2.16514 R2 2.37728 -0.22786 0.00000 -0.21213 -0.21213 2.16514 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.227860 0.000450 NO RMS Force 0.161121 0.000300 NO Maximum Displacement 0.212132 0.001800 NO RMS Displacement 0.150000 0.001200 NO Predicted change in Energy=-6.051537D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.145745 3 8 0 0.000000 0.000000 -1.145745 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.145745 0.000000 3 O 1.145745 2.291489 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.145745 3 8 0 0.000000 0.000000 -1.145745 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 12.0345447 12.0345447 Standard basis: CC-pVTZ (5D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 5 symmetry adapted cartesian basis functions of B1G symmetry. There are 10 symmetry adapted cartesian basis functions of B2G symmetry. There are 10 symmetry adapted cartesian basis functions of B3G symmetry. There are 4 symmetry adapted cartesian basis functions of AU symmetry. There are 22 symmetry adapted cartesian basis functions of B1U symmetry. There are 14 symmetry adapted cartesian basis functions of B2U symmetry. There are 14 symmetry adapted cartesian basis functions of B3U symmetry. There are 21 symmetry adapted basis functions of AG symmetry. There are 5 symmetry adapted basis functions of B1G symmetry. There are 9 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 4 symmetry adapted basis functions of AU symmetry. There are 18 symmetry adapted basis functions of B1U symmetry. There are 12 symmetry adapted basis functions of B2U symmetry. There are 12 symmetry adapted basis functions of B3U symmetry. 90 basis functions, 156 primitive gaussians, 105 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 66.5082956101 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 90 RedAO= T EigKep= 2.64D-03 NBF= 21 5 9 9 4 18 12 12 NBsUse= 90 1.00D-06 EigRej= -1.00D+00 NBFU= 21 5 9 9 4 18 12 12 Initial guess from the checkpoint file: "/scratch/webmo-5066/567420/Gau-10301.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) Virtual (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (DLTG) (DLTG) (DLTG) (DLTG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) ExpMin= 1.72D-01 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=10435518. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -204.707661972 A.U. after 12 cycles NFock= 12 Conv=0.72D-08 -V/T= 2.0066 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 8 0.000000000 0.000000000 -0.090248529 3 8 0.000000000 0.000000000 0.090248529 ------------------------------------------------------------------- Cartesian Forces: Max 0.090248529 RMS 0.042543565 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.090248529 RMS 0.063815347 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -7.25D-02 DEPred=-6.05D-02 R= 1.20D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0000D-01 Trust test= 1.20D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 A2 R1 0.72610 R2 -0.07740 0.72610 A1 0.00000 0.00000 0.03173 A2 0.00000 0.00000 0.00000 0.03173 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.03173 0.03173 0.64871 0.80350 RFO step: Lambda= 0.00000000D+00 EMin= 3.17319266D-02 Quartic linear search produced a step of 0.36248. Iteration 1 RMS(Cart)= 0.05437261 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.17D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.16514 -0.09025 -0.07689 0.00000 -0.07689 2.08825 R2 2.16514 -0.09025 -0.07689 0.00000 -0.07689 2.08825 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.090249 0.000450 NO RMS Force 0.063815 0.000300 NO Maximum Displacement 0.076894 0.001800 NO RMS Displacement 0.054373 0.001200 NO Predicted change in Energy=-1.004359D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.105054 3 8 0 0.000000 0.000000 -1.105054 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.105054 0.000000 3 O 1.105054 2.210108 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.105054 3 8 0 0.000000 0.000000 -1.105054 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 12.9371455 12.9371455 Standard basis: CC-pVTZ (5D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 5 symmetry adapted cartesian basis functions of B1G symmetry. There are 10 symmetry adapted cartesian basis functions of B2G symmetry. There are 10 symmetry adapted cartesian basis functions of B3G symmetry. There are 4 symmetry adapted cartesian basis functions of AU symmetry. There are 22 symmetry adapted cartesian basis functions of B1U symmetry. There are 14 symmetry adapted cartesian basis functions of B2U symmetry. There are 14 symmetry adapted cartesian basis functions of B3U symmetry. There are 21 symmetry adapted basis functions of AG symmetry. There are 5 symmetry adapted basis functions of B1G symmetry. There are 9 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 4 symmetry adapted basis functions of AU symmetry. There are 18 symmetry adapted basis functions of B1U symmetry. There are 12 symmetry adapted basis functions of B2U symmetry. There are 12 symmetry adapted basis functions of B3U symmetry. 90 basis functions, 156 primitive gaussians, 105 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 68.9572950604 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 90 RedAO= T EigKep= 2.23D-03 NBF= 21 5 9 9 4 18 12 12 NBsUse= 90 1.00D-06 EigRej= -1.00D+00 NBFU= 21 5 9 9 4 18 12 12 Initial guess from the checkpoint file: "/scratch/webmo-5066/567420/Gau-10301.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) Virtual (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (DLTG) (DLTG) (DLTG) (DLTG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) ExpMin= 1.72D-01 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=10435770. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -204.714686353 A.U. after 11 cycles NFock= 11 Conv=0.95D-08 -V/T= 2.0045 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 8 0.000000000 0.000000000 0.003980370 3 8 0.000000000 0.000000000 -0.003980370 ------------------------------------------------------------------- Cartesian Forces: Max 0.003980370 RMS 0.001876364 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.003980370 RMS 0.002814547 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 DE= -7.02D-03 DEPred=-1.00D-02 R= 6.99D-01 TightC=F SS= 1.41D+00 RLast= 1.09D-01 DXNew= 8.4853D-01 3.2624D-01 Trust test= 6.99D-01 RLast= 1.09D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 A2 R1 1.01446 R2 0.21097 1.01446 A1 0.00000 0.00000 0.03173 A2 0.00000 0.00000 0.00000 0.03173 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.03173 0.03173 0.80350 1.22543 RFO step: Lambda= 0.00000000D+00 EMin= 3.17319266D-02 Quartic linear search produced a step of -0.03642. Iteration 1 RMS(Cart)= 0.00198026 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.05D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.08825 0.00398 0.00280 0.00000 0.00280 2.09105 R2 2.08825 0.00398 0.00280 0.00000 0.00280 2.09105 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.003980 0.000450 NO RMS Force 0.002815 0.000300 NO Maximum Displacement 0.002801 0.001800 NO RMS Displacement 0.001980 0.001200 NO Predicted change in Energy=-1.268326D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.106536 0.000000 3 O 1.106536 2.213071 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 12.9025156 12.9025156 Standard basis: CC-pVTZ (5D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 5 symmetry adapted cartesian basis functions of B1G symmetry. There are 10 symmetry adapted cartesian basis functions of B2G symmetry. There are 10 symmetry adapted cartesian basis functions of B3G symmetry. There are 4 symmetry adapted cartesian basis functions of AU symmetry. There are 22 symmetry adapted cartesian basis functions of B1U symmetry. There are 14 symmetry adapted cartesian basis functions of B2U symmetry. There are 14 symmetry adapted cartesian basis functions of B3U symmetry. There are 21 symmetry adapted basis functions of AG symmetry. There are 5 symmetry adapted basis functions of B1G symmetry. There are 9 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 4 symmetry adapted basis functions of AU symmetry. There are 18 symmetry adapted basis functions of B1U symmetry. There are 12 symmetry adapted basis functions of B2U symmetry. There are 12 symmetry adapted basis functions of B3U symmetry. 90 basis functions, 156 primitive gaussians, 105 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 68.8649414632 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 90 RedAO= T EigKep= 2.25D-03 NBF= 21 5 9 9 4 18 12 12 NBsUse= 90 1.00D-06 EigRej= -1.00D+00 NBFU= 21 5 9 9 4 18 12 12 Initial guess from the checkpoint file: "/scratch/webmo-5066/567420/Gau-10301.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) Virtual (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (DLTG) (DLTG) (DLTG) (DLTG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) Keep R1 ints in memory in symmetry-blocked form, NReq=10435742. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RM062X) = -204.714697489 A.U. after 7 cycles NFock= 7 Conv=0.28D-08 -V/T= 2.0046 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 8 0.000000000 0.000000000 0.000003105 3 8 0.000000000 0.000000000 -0.000003105 ------------------------------------------------------------------- Cartesian Forces: Max 0.000003105 RMS 0.000001464 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000003105 RMS 0.000002195 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 4 DE= -1.11D-05 DEPred=-1.27D-05 R= 8.78D-01 TightC=F SS= 1.41D+00 RLast= 3.96D-03 DXNew= 8.4853D-01 1.1882D-02 Trust test= 8.78D-01 RLast= 3.96D-03 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 A2 R1 1.11184 R2 0.30835 1.11184 A1 0.00000 0.00000 0.03173 A2 0.00000 0.00000 0.00000 0.03173 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.03173 0.03173 0.80350 1.42019 RFO step: Lambda= 0.00000000D+00 EMin= 3.17319266D-02 Quartic linear search produced a step of 0.00078. Iteration 1 RMS(Cart)= 0.00000155 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.05D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.09105 0.00000 0.00000 0.00000 0.00000 2.09105 R2 2.09105 0.00000 0.00000 0.00000 0.00000 2.09105 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000003 0.000450 YES RMS Force 0.000002 0.000300 YES Maximum Displacement 0.000002 0.001800 YES RMS Displacement 0.000002 0.001200 YES Predicted change in Energy=-6.787502D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1065 -DE/DX = 0.0 ! ! R2 R(1,3) 1.1065 -DE/DX = 0.0 ! ! A1 L(2,1,3,-1,-1) 180.0 -DE/DX = 0.0 ! ! A2 L(2,1,3,-2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.106536 0.000000 3 O 1.106536 2.213071 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 12.9025156 12.9025156 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) Virtual (PIU) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (DLTG) (DLTG) (SGU) (PIG) (PIG) (SGG) (DLTU) (DLTU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PHIG) (PHIG) (SGU) (PHIU) (PHIU) (DLTG) (DLTG) (SGU) (DLTU) (DLTU) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIG) (PIG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -20.15922 -20.15915 -15.44197 -1.86449 -1.74239 Alpha occ. eigenvalues -- -1.11261 -1.08652 -1.08652 -1.04014 -0.83600 Alpha occ. eigenvalues -- -0.83600 Alpha virt. eigenvalues -- -0.34517 -0.34517 -0.19008 0.08951 0.13121 Alpha virt. eigenvalues -- 0.14422 0.14422 0.28566 0.29449 0.33614 Alpha virt. eigenvalues -- 0.33614 0.48744 0.48744 0.53277 0.53277 Alpha virt. eigenvalues -- 0.65698 0.89009 0.89009 0.89121 1.09711 Alpha virt. eigenvalues -- 1.09712 1.26572 1.41386 1.41387 1.64706 Alpha virt. eigenvalues -- 1.64706 1.86626 1.87284 2.09808 2.09808 Alpha virt. eigenvalues -- 2.25314 2.49683 2.49683 2.70314 3.32034 Alpha virt. eigenvalues -- 3.32034 3.37093 3.37102 3.37387 3.37387 Alpha virt. eigenvalues -- 3.52882 3.52882 3.65291 3.86354 3.86354 Alpha virt. eigenvalues -- 3.89395 3.89398 4.03090 4.07942 4.07942 Alpha virt. eigenvalues -- 4.69380 4.69380 4.70453 4.78624 4.78624 Alpha virt. eigenvalues -- 4.86742 4.86743 5.05468 5.63791 5.63795 Alpha virt. eigenvalues -- 5.75989 5.85425 5.85442 5.88094 5.88101 Alpha virt. eigenvalues -- 5.88273 5.88273 6.10703 6.10703 6.39447 Alpha virt. eigenvalues -- 6.69777 6.69777 7.05672 7.47441 7.70512 Alpha virt. eigenvalues -- 7.74713 7.74713 15.33247 16.24496 Condensed to atoms (all electrons): 1 2 3 1 N 5.082916 0.621960 0.621960 2 O 0.621960 7.270791 -0.056168 3 O 0.621960 -0.056168 7.270791 Mulliken charges: 1 1 N 0.673165 2 O 0.163418 3 O 0.163418 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.673165 2 O 0.163418 3 O 0.163418 Electronic spatial extent (au): = 96.9039 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.6428 YY= -12.6428 ZZ= -10.9550 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.5626 YY= -0.5626 ZZ= 1.1252 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -7.9815 YYYY= -7.9815 ZZZZ= -69.0996 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.6605 XXZZ= -13.7470 YYZZ= -13.7470 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 6.886494146318D+01 E-N=-6.107907869228D+02 KE= 2.037791621715D+02 Symmetry AG KE= 1.146923227876D+02 Symmetry B1G KE= 4.170023545060D-33 Symmetry B2G KE= 5.246518829479D+00 Symmetry B3G KE= 5.246518829479D+00 Symmetry AU KE= 6.687016714482D-33 Symmetry B1U KE= 7.026544501398D+01 Symmetry B2U KE= 4.164178355443D+00 Symmetry B3U KE= 4.164178355443D+00 B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Final structure in terms of initial Z-matrix: N O,1,B1 O,1,B2,2,A1 Variables: B1=1.10653573 B2=1.10653573 A1=180. 1\1\GINC-COMPUTE-0-45\FOpt\RM062X\CC-pVTZ\N1O2(1+)\ZDANOVSKAIA\25-May- 2016\0\\#N M062X/cc-pVTZ OPT FREQ Geom=Connectivity\\3. NO2(+1)\\1,1\N ,0.,0.,0.\O,0.,0.,1.1065357266\O,0.,0.,-1.1065357266\\Version=EM64L-G0 9RevD.01\State=1-SGG\HF=-204.7146975\RMSD=2.764e-09\RMSF=1.464e-06\Dip ole=0.,0.,0.\Quadrupole=-0.4182857,-0.4182857,0.8365714,0.,0.,0.\PG=D* H [O(N1),C*(O1.O1)]\\@ CONFIDENCE: THAT QUIET ASSURED FEELING YOU HAVE JUST BEFORE YOU FALL FLAT ON YOUR FACE. Job cpu time: 0 days 0 hours 0 minutes 37.5 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 18:17:21 2016. Link1: Proceeding to internal job step number 2. ------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/CC-pVTZ Freq ------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=16,6=1,11=2,14=-4,16=1,25=1,30=1,70=2,71=2,74=-55,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "/scratch/webmo-5066/567420/Gau-10301.chk" ---------- 3. NO2(+1) ---------- Charge = 1 Multiplicity = 1 Redundant internal coordinates found in file. N,0,0.,0.,0. O,0,0.,0.,1.1065357266 O,0,0.,0.,-1.1065357266 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1065 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.1065 calculate D2E/DX2 analytically ! ! A1 L(2,1,3,-1,-1) 180.0 calculate D2E/DX2 analytically ! ! A2 L(2,1,3,-2,-2) 180.0 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 N 0.000000 2 O 1.106536 0.000000 3 O 1.106536 2.213071 0.000000 Stoichiometry NO2(1+) Framework group D*H[O(N),C*(O.O)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 8 0 0.000000 0.000000 1.106536 3 8 0 0.000000 0.000000 -1.106536 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 12.9025156 12.9025156 Standard basis: CC-pVTZ (5D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 5 symmetry adapted cartesian basis functions of B1G symmetry. There are 10 symmetry adapted cartesian basis functions of B2G symmetry. There are 10 symmetry adapted cartesian basis functions of B3G symmetry. There are 4 symmetry adapted cartesian basis functions of AU symmetry. There are 22 symmetry adapted cartesian basis functions of B1U symmetry. There are 14 symmetry adapted cartesian basis functions of B2U symmetry. There are 14 symmetry adapted cartesian basis functions of B3U symmetry. There are 21 symmetry adapted basis functions of AG symmetry. There are 5 symmetry adapted basis functions of B1G symmetry. There are 9 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 4 symmetry adapted basis functions of AU symmetry. There are 18 symmetry adapted basis functions of B1U symmetry. There are 12 symmetry adapted basis functions of B2U symmetry. There are 12 symmetry adapted basis functions of B3U symmetry. 90 basis functions, 156 primitive gaussians, 105 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 68.8649414632 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 90 RedAO= T EigKep= 2.25D-03 NBF= 21 5 9 9 4 18 12 12 NBsUse= 90 1.00D-06 EigRej= -1.00D+00 NBFU= 21 5 9 9 4 18 12 12 Initial guess from the checkpoint file: "/scratch/webmo-5066/567420/Gau-10301.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) Virtual (PIU) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (DLTG) (DLTG) (SGU) (PIG) (PIG) (SGG) (DLTU) (DLTU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PHIG) (PHIG) (SGU) (PHIU) (PHIU) (DLTG) (DLTG) (SGU) (DLTU) (DLTU) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIG) (PIG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGG) (SGU) Keep R1 ints in memory in symmetry-blocked form, NReq=10435742. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RM062X) = -204.714697489 A.U. after 1 cycles NFock= 1 Conv=0.26D-09 -V/T= 2.0046 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 90 NBasis= 90 NAE= 11 NBE= 11 NFC= 0 NFV= 0 NROrb= 90 NOA= 11 NOB= 11 NVA= 79 NVB= 79 **** Warning!!: The largest alpha MO coefficient is 0.11239827D+02 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=10400474. There are 9 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 9. 9 vectors produced by pass 0 Test12= 9.66D-15 1.11D-08 XBig12= 1.98D+01 3.03D+00. AX will form 9 AO Fock derivatives at one time. 9 vectors produced by pass 1 Test12= 9.66D-15 1.11D-08 XBig12= 6.32D+00 9.85D-01. 9 vectors produced by pass 2 Test12= 9.66D-15 1.11D-08 XBig12= 5.51D-02 8.99D-02. 9 vectors produced by pass 3 Test12= 9.66D-15 1.11D-08 XBig12= 3.24D-04 5.83D-03. 9 vectors produced by pass 4 Test12= 9.66D-15 1.11D-08 XBig12= 1.86D-06 4.62D-04. 9 vectors produced by pass 5 Test12= 9.66D-15 1.11D-08 XBig12= 1.28D-08 3.96D-05. 7 vectors produced by pass 6 Test12= 9.66D-15 1.11D-08 XBig12= 5.34D-11 3.07D-06. 2 vectors produced by pass 7 Test12= 9.66D-15 1.11D-08 XBig12= 7.68D-13 3.27D-07. 1 vectors produced by pass 8 Test12= 9.66D-15 1.11D-08 XBig12= 6.58D-15 2.68D-08. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 64 with 9 vectors. Isotropic polarizability for W= 0.000000 11.95 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) Virtual (PIU) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (DLTG) (DLTG) (SGU) (PIG) (PIG) (SGG) (DLTU) (DLTU) (SGU) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PHIG) (PHIG) (SGU) (PHIU) (PHIU) (DLTG) (DLTG) (SGU) (DLTU) (DLTU) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIG) (PIG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (SGG) (SGU) The electronic state is 1-SGG. Alpha occ. eigenvalues -- -20.15922 -20.15915 -15.44197 -1.86449 -1.74239 Alpha occ. eigenvalues -- -1.11261 -1.08652 -1.08652 -1.04014 -0.83600 Alpha occ. eigenvalues -- -0.83600 Alpha virt. eigenvalues -- -0.34517 -0.34517 -0.19008 0.08951 0.13121 Alpha virt. eigenvalues -- 0.14422 0.14422 0.28566 0.29449 0.33614 Alpha virt. eigenvalues -- 0.33614 0.48744 0.48744 0.53277 0.53277 Alpha virt. eigenvalues -- 0.65698 0.89009 0.89009 0.89121 1.09711 Alpha virt. eigenvalues -- 1.09712 1.26572 1.41386 1.41387 1.64706 Alpha virt. eigenvalues -- 1.64706 1.86626 1.87284 2.09808 2.09808 Alpha virt. eigenvalues -- 2.25314 2.49683 2.49683 2.70314 3.32034 Alpha virt. eigenvalues -- 3.32034 3.37093 3.37102 3.37387 3.37387 Alpha virt. eigenvalues -- 3.52882 3.52882 3.65291 3.86354 3.86354 Alpha virt. eigenvalues -- 3.89395 3.89398 4.03090 4.07942 4.07942 Alpha virt. eigenvalues -- 4.69380 4.69380 4.70453 4.78624 4.78624 Alpha virt. eigenvalues -- 4.86742 4.86743 5.05468 5.63791 5.63795 Alpha virt. eigenvalues -- 5.75989 5.85425 5.85442 5.88094 5.88101 Alpha virt. eigenvalues -- 5.88273 5.88273 6.10703 6.10703 6.39447 Alpha virt. eigenvalues -- 6.69777 6.69777 7.05672 7.47441 7.70512 Alpha virt. eigenvalues -- 7.74713 7.74713 15.33247 16.24496 Condensed to atoms (all electrons): 1 2 3 1 N 5.082916 0.621960 0.621960 2 O 0.621960 7.270791 -0.056168 3 O 0.621960 -0.056168 7.270791 Mulliken charges: 1 1 N 0.673165 2 O 0.163418 3 O 0.163418 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.673165 2 O 0.163418 3 O 0.163418 APT charges: 1 1 N 1.322527 2 O -0.161264 3 O -0.161264 Sum of APT charges = 1.00000 APT charges with hydrogens summed into heavy atoms: 1 1 N 1.322527 2 O -0.161264 3 O -0.161264 Electronic spatial extent (au): = 96.9039 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.6428 YY= -12.6428 ZZ= -10.9550 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.5626 YY= -0.5626 ZZ= 1.1252 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -7.9815 YYYY= -7.9815 ZZZZ= -69.0996 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -2.6605 XXZZ= -13.7470 YYZZ= -13.7470 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 6.886494146318D+01 E-N=-6.107907869528D+02 KE= 2.037791621739D+02 Symmetry AG KE= 1.146923227807D+02 Symmetry B1G KE= 4.170023556351D-33 Symmetry B2G KE= 5.246518837103D+00 Symmetry B3G KE= 5.246518837103D+00 Symmetry AU KE= 6.687016733150D-33 Symmetry B1U KE= 7.026544499154D+01 Symmetry B2U KE= 4.164178363710D+00 Symmetry B3U KE= 4.164178363710D+00 Exact polarizability: 6.816 0.000 6.816 0.000 0.000 22.229 Approx polarizability: 8.117 0.000 8.117 0.000 0.000 42.441 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -0.0006 0.0003 0.0015 40.2380 40.2380 693.4798 Low frequencies --- 693.4798 1527.9914 2528.2000 Diagonal vibrational polarizability: 0.7608872 0.7608872 2.2624965 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 PIU PIU SGG Frequencies -- 693.4798 693.4798 1527.9914 Red. masses -- 14.5549 14.5549 15.9949 Frc consts -- 4.1241 4.1241 22.0026 IR Inten -- 13.5974 13.5974 0.0000 Atom AN X Y Z X Y Z X Y Z 1 7 -0.02 0.85 0.00 0.85 0.02 0.00 0.00 0.00 0.00 2 8 0.01 -0.37 0.00 -0.37 -0.01 0.00 0.00 0.00 0.71 3 8 0.01 -0.37 0.00 -0.37 -0.01 0.00 0.00 0.00 -0.71 4 SGU Frequencies -- 2528.2000 Red. masses -- 14.5549 Frc consts -- 54.8129 IR Inten -- 537.3753 Atom AN X Y Z 1 7 0.00 0.00 0.85 2 8 0.00 0.00 -0.37 3 8 0.00 0.00 -0.37 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 7 and mass 14.00307 Atom 2 has atomic number 8 and mass 15.99491 Atom 3 has atomic number 8 and mass 15.99491 Molecular mass: 45.99290 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.00000 139.87514 139.87514 X 0.00000 1.00000 0.00000 Y 0.00000 0.00000 1.00000 Z 1.00000 0.00000 0.00000 This molecule is a prolate symmetric top. Rotational symmetry number 2. Rotational temperature (Kelvin) 0.61922 Rotational constant (GHZ): 12.902516 Zero-point vibrational energy 32557.3 (Joules/Mol) 7.78138 (Kcal/Mol) Vibrational temperatures: 997.76 997.76 2198.44 3637.51 (Kelvin) Zero-point correction= 0.012400 (Hartree/Particle) Thermal correction to Energy= 0.014996 Thermal correction to Enthalpy= 0.015940 Thermal correction to Gibbs Free Energy= -0.008256 Sum of electronic and zero-point Energies= -204.702297 Sum of electronic and thermal Energies= -204.699702 Sum of electronic and thermal Enthalpies= -204.698757 Sum of electronic and thermal Free Energies= -204.722954 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 9.410 6.721 50.926 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 37.403 Rotational 0.592 1.987 12.885 Vibrational 7.929 1.753 0.638 Q Log10(Q) Ln(Q) Total Bot 0.627589D+04 3.797676 8.744471 Total V=0 0.317290D+10 9.501456 21.877912 Vib (Bot) 0.212631D-05 -5.672374 -13.061124 Vib (V=0) 0.107500D+01 0.031407 0.072316 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.122600D+08 7.088491 16.321855 Rotational 0.240746D+03 2.381558 5.483740 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 8 0.000000000 0.000000000 0.000003111 3 8 0.000000000 0.000000000 -0.000003111 ------------------------------------------------------------------- Cartesian Forces: Max 0.000003111 RMS 0.000001466 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000003111 RMS 0.000002200 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 A1 A2 R1 1.29560 R2 0.11764 1.29560 A1 0.00000 0.00000 0.19377 A2 0.00000 0.00000 0.00000 0.19377 ITU= 0 Eigenvalues --- 0.19377 0.19377 1.17796 1.41324 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000156 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.96D-14 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.09105 0.00000 0.00000 0.00000 0.00000 2.09105 R2 2.09105 0.00000 0.00000 0.00000 0.00000 2.09105 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000003 0.000450 YES RMS Force 0.000002 0.000300 YES Maximum Displacement 0.000002 0.001800 YES RMS Displacement 0.000002 0.001200 YES Predicted change in Energy=-6.846671D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1065 -DE/DX = 0.0 ! ! R2 R(1,3) 1.1065 -DE/DX = 0.0 ! ! A1 L(2,1,3,-1,-1) 180.0 -DE/DX = 0.0 ! ! A2 L(2,1,3,-2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-COMPUTE-0-45\Freq\RM062X\CC-pVTZ\N1O2(1+)\ZDANOVSKAIA\25-May- 2016\0\\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RM062X/CC-pVTZ Freq\\3. NO2(+1)\\1,1\N,0.,0.,0.\O,0.,0.,1.1065357266\O,0.,0.,-1.1065 357266\\Version=EM64L-G09RevD.01\State=1-SGG\HF=-204.7146975\RMSD=2.64 6e-10\RMSF=1.466e-06\ZeroPoint=0.0124004\Thermal=0.0149959\Dipole=0.,0 .,0.\DipoleDeriv=0.673035,0.,0.,0.,0.673035,0.,0.,0.,2.6215118,0.16348 25,0.,0.,0.,0.1634825,0.,0.,0.,-0.8107559,0.1634825,0.,0.,0.,0.1634825 ,0.,0.,0.,-0.8107559\Polar=6.8162198,0.,6.8162198,0.,0.,22.228673\PG=D *H [O(N1),C*(O1.O1)]\NImag=0\\0.17725707,0.,0.17725707,0.,0.,2.3559105 5,-0.08862854,0.,0.,0.04480429,0.,-0.08862854,0.,0.,0.04480429,0.,0.,- 1.17795527,0.,0.,1.29559645,-0.08862854,0.,0.,0.04382425,0.,0.,0.04480 429,0.,-0.08862854,0.,0.,0.04382425,0.,0.,0.04480429,0.,0.,-1.17795527 ,0.,0.,-0.11764117,0.,0.,1.29559645\\0.,0.,0.,0.,0.,-0.00000311,0.,0., 0.00000311\\\@ "MATHEMATICS IS THE ART OF GIVING THE SAME NAME TO DIFFERENT THINGS." - H. POINCARE Job cpu time: 0 days 0 hours 0 minutes 34.0 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 18:17:30 2016.