Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567424/Gau-19028.inp" -scrdir="/scratch/webmo-5066/567424/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 19029. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------------ 5. Bromobenzene (C6H5Br) ------------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 H 5 B7 4 A6 3 D5 0 H 4 B8 3 A7 2 D6 0 Br 3 B9 2 A8 1 D7 0 H 2 B10 1 A9 6 D8 0 H 1 B11 2 A10 3 D9 0 Variables: B1 1.38769 B2 1.38549 B3 1.38549 B4 1.38769 B5 1.3874 B6 1.08097 B7 1.08145 B8 1.08035 B9 1.89594 B10 1.08035 B11 1.08145 A1 118.97224 A2 121.40241 A3 118.97224 A4 120.42342 A5 120.09687 A6 119.36258 A7 120.08839 A8 119.29879 A9 120.93937 A10 119.36258 D1 0. D2 0. D3 0. D4 180. D5 180. D6 180. D7 180. D8 180. D9 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.387693 3 6 0 1.212106 0.000000 2.058806 4 6 0 2.416483 0.000000 1.373920 5 6 0 2.400665 0.000000 -0.013683 6 6 0 1.196367 0.000000 -0.702562 7 1 0 1.190206 0.000000 -1.783511 8 1 0 3.337079 0.000000 -0.554663 9 1 0 3.349381 0.000000 1.918762 10 35 0 1.222911 0.000000 3.954712 11 1 0 -0.926627 0.000000 1.943133 12 1 0 -0.942520 0.000000 -0.530272 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.387693 0.000000 3 C 2.389118 1.385494 0.000000 4 C 2.779756 2.416522 1.385494 0.000000 5 C 2.400704 2.779756 2.389118 1.387693 0.000000 6 C 1.387403 2.408414 2.761413 2.408414 1.387403 7 H 2.144179 3.387200 3.842380 3.387200 2.144179 8 H 3.382861 3.861197 3.368343 2.137038 1.081449 9 H 3.860052 3.391222 2.141859 1.080348 2.152766 10 Br 4.139476 2.843432 1.895937 2.843432 4.139476 11 H 2.152766 1.080348 2.141859 3.391222 3.860052 12 H 1.081449 2.137038 3.368343 3.861197 3.382861 6 7 8 9 10 6 C 0.000000 7 H 1.080967 0.000000 8 H 2.145815 2.473687 0.000000 9 H 3.392168 4.285891 2.473456 0.000000 10 Br 4.657350 5.738317 4.980379 2.943972 0.000000 11 H 3.392168 4.285891 4.941475 4.276078 2.943972 12 H 2.145815 2.473687 4.279668 4.941475 4.980379 11 12 11 H 0.000000 12 H 2.473456 0.000000 Stoichiometry C6H5Br Framework group C2V[C2(HCCBr),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.200352 -2.165211 2 6 0 0.000000 1.208261 -0.777541 3 6 0 0.000000 0.000000 -0.099530 4 6 0 0.000000 -1.208261 -0.777541 5 6 0 0.000000 -1.200352 -2.165211 6 6 0 0.000000 0.000000 -2.860943 7 1 0 0.000000 0.000000 -3.941910 8 1 0 0.000000 -2.139834 -2.700846 9 1 0 0.000000 -2.138039 -0.227391 10 35 0 0.000000 0.000000 1.796407 11 1 0 0.000000 2.138039 -0.227391 12 1 0 0.000000 2.139834 -2.700846 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7389554 0.9982636 0.8503494 Standard basis: CC-pVTZ (5D, 7F) There are 133 symmetry adapted cartesian basis functions of A1 symmetry. There are 41 symmetry adapted cartesian basis functions of A2 symmetry. There are 60 symmetry adapted cartesian basis functions of B1 symmetry. There are 100 symmetry adapted cartesian basis functions of B2 symmetry. There are 112 symmetry adapted basis functions of A1 symmetry. There are 39 symmetry adapted basis functions of A2 symmetry. There are 55 symmetry adapted basis functions of B1 symmetry. There are 87 symmetry adapted basis functions of B2 symmetry. 293 basis functions, 594 primitive gaussians, 334 cartesian basis functions 38 alpha electrons 38 beta electrons nuclear repulsion energy 432.7424247445 Hartrees. NAtoms= 12 NActive= 12 NUniq= 8 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. NBasis= 293 RedAO= T EigKep= 4.03D-05 NBF= 112 39 55 87 NBsUse= 293 1.00D-06 EigRej= -1.00D+00 NBFU= 112 39 55 87 ExpMin= 1.02D-01 ExpMax= 1.06D+07 ExpMxC= 1.21D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (B2) (B1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A2) (B2) (B1) Virtual (A2) (B1) (A1) (B1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B1) (B1) (A2) (A1) (B2) (B1) (A1) (B2) (A2) (A1) (A1) (B2) (B1) (A1) (B1) (A2) (B2) (A1) (B2) (A1) (B2) (B1) (A1) (A1) (B2) (B1) (B2) (A1) (A2) (A1) (A2) (B2) (A1) (B1) (A1) (B2) (A2) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B1) (A2) (A1) (B1) (B2) (A1) (B1) (A1) (A2) (A1) (B2) (A1) (B2) (B1) (B2) (A2) (A1) (B2) (B1) (B2) (A1) (B2) (A2) (A1) (A1) (B2) (B2) (A1) (A2) (B1) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A2) (A1) (A2) (B1) (B2) (A1) (A1) (B2) (B1) (B2) (A1) (B1) (A1) (B2) (B2) (A1) (A2) (B1) (A1) (A2) (B1) (B2) (A1) (A2) (B2) (A1) (A1) (B2) (A1) (B2) (B1) (B1) (A1) (B2) (A2) (B1) (B2) (A1) (B1) (B1) (A1) (B2) (A2) (A2) (A1) (B1) (A1) (B2) (B1) (A2) (A1) (B1) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (A1) (B2) (A1) (B2) (A2) (A1) (B1) (A2) (B1) (B2) (A1) (A1) (A2) (B1) (B1) (B2) (A2) (B2) (A1) (B2) (B1) (A2) (A1) (A1) (B1) (B2) (A1) (A2) (B2) (A1) (B1) (B2) (A2) (A1) (B2) (A2) (B1) (A1) (B1) (B2) (A2) (A1) (B2) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (B1) (B2) (A1) (A2) (A1) (A2) (B1) (B2) (B1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B1) (B2) (A2) (A2) (A1) (B1) (B2) (A1) (B2) (A2) (A1) (A1) (B2) (B2) (B1) (B2) (A1) (A1) (A1) (B2) (B2) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -2805.86689539 A.U. after 14 cycles NFock= 14 Conv=0.70D-08 -V/T= 2.0016 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 293 NBasis= 293 NAE= 38 NBE= 38 NFC= 0 NFV= 0 NROrb= 293 NOA= 38 NOB= 38 NVA= 255 NVB= 255 **** Warning!!: The largest alpha MO coefficient is 0.41930262D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 12 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 3.23D-13 3.33D-08 XBig12= 6.89D+00 9.09D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 3.23D-13 3.33D-08 XBig12= 6.05D-02 1.19D-01. 3 vectors produced by pass 2 Test12= 3.23D-13 3.33D-08 XBig12= 8.55D-04 7.77D-03. 3 vectors produced by pass 3 Test12= 3.23D-13 3.33D-08 XBig12= 6.06D-06 8.94D-04. 3 vectors produced by pass 4 Test12= 3.23D-13 3.33D-08 XBig12= 5.96D-08 7.66D-05. 3 vectors produced by pass 5 Test12= 3.23D-13 3.33D-08 XBig12= 7.14D-10 1.39D-05. 3 vectors produced by pass 6 Test12= 3.23D-13 3.33D-08 XBig12= 1.25D-11 1.78D-06. 2 vectors produced by pass 7 Test12= 3.23D-13 3.33D-08 XBig12= 1.45D-13 1.17D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 23 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 38.1477 Anisotropy = 209.6609 XX= 177.9216 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -57.9723 ZY= 47.6479 XZ= 0.0000 YZ= 48.8315 ZZ= -5.5063 Eigenvalues: -86.6505 23.1719 177.9216 2 C Isotropic = 35.4678 Anisotropy = 183.2152 XX= 157.6112 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -55.1547 ZY= -49.5640 XZ= 0.0000 YZ= -46.1626 ZZ= 3.9468 Eigenvalues: -81.8547 30.6468 157.6112 3 C Isotropic = 29.5143 Anisotropy = 147.3783 XX= 127.7665 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 45.1864 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -84.4100 Eigenvalues: -84.4100 45.1864 127.7665 4 C Isotropic = 35.4678 Anisotropy = 183.2152 XX= 157.6112 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -55.1547 ZY= 49.5640 XZ= 0.0000 YZ= 46.1626 ZZ= 3.9468 Eigenvalues: -81.8547 30.6468 157.6112 5 C Isotropic = 38.1477 Anisotropy = 209.6609 XX= 177.9216 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -57.9723 ZY= -47.6479 XZ= 0.0000 YZ= -48.8315 ZZ= -5.5063 Eigenvalues: -86.6505 23.1719 177.9216 6 C Isotropic = 41.3595 Anisotropy = 214.2212 XX= 184.1736 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.1103 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -84.2054 Eigenvalues: -84.2054 24.1103 184.1736 7 H Isotropic = 23.7569 Anisotropy = 5.6752 XX= 20.8468 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 27.5404 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 22.8837 Eigenvalues: 20.8468 22.8837 27.5404 8 H Isotropic = 23.7891 Anisotropy = 5.9978 XX= 20.9047 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 23.5730 ZY= -1.8963 XZ= 0.0000 YZ= -1.9947 ZZ= 26.8896 Eigenvalues: 20.9047 22.6749 27.7876 9 H Isotropic = 23.6790 Anisotropy = 10.4677 XX= 19.5249 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.1731 ZY= 4.3229 XZ= 0.0000 YZ= 4.9546 ZZ= 27.3390 Eigenvalues: 19.5249 20.8546 30.6575 10 Br Isotropic = 2104.4371 Anisotropy = 1218.9168 XX= 1665.6273 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 1730.6358 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 2917.0483 Eigenvalues: 1665.6273 1730.6358 2917.0483 11 H Isotropic = 23.6790 Anisotropy = 10.4677 XX= 19.5249 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 24.1731 ZY= -4.3229 XZ= 0.0000 YZ= -4.9546 ZZ= 27.3390 Eigenvalues: 19.5249 20.8546 30.6575 12 H Isotropic = 23.7891 Anisotropy = 5.9978 XX= 20.9047 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 23.5730 ZY= 1.8963 XZ= 0.0000 YZ= 1.9947 ZZ= 26.8896 Eigenvalues: 20.9047 22.6749 27.7876 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (B1) (A2) (B2) (A1) (B1) (A1) (B2) (A2) (A1) (A1) (B1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A1) (A2) (A2) (B2) (B1) (A1) (B2) (A1) (A2) (B2) (A1) (B1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (B1) (A1) (B2) (B1) (A2) (A1) (A1) (B2) (A1) (B2) (B1) (A2) (A1) (B2) (B2) (B2) (B1) (A1) (B2) (A2) (A1) (B2) (A1) (A1) (B2) (A2) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (A2) (B1) (A1) (A2) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B1) (B2) (A1) (B2) (A2) (B1) (A1) (B1) (B2) (A2) (A1) (B2) (A2) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B1) (B2) (B1) (A2) (B2) (B1) (A1) (B1) (A1) (B2) (A2) (A2) (A1) (B1) (A1) (B2) (B1) (A2) (A1) (B1) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (A1) (B2) (A1) (A2) (A1) (B2) (B1) (A2) (B1) (B2) (A1) (B1) (A1) (A2) (B1) (B2) (A2) (B2) (B2) (B1) (A1) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (A2) (B1) (A1) (B2) (A1) (B2) (B1) (A2) (B2) (B1) (A1) (A2) (B2) (A1) (B1) (B2) (A2) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (A1) (A2) (A1) (A2) (B1) (B2) (A1) (B1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (B1) (B2) (A2) (A2) (A1) (B1) (B2) (A1) (B2) (A2) (A1) (A1) (B2) (B2) (B1) (A1) (B2) (A1) (A1) (B2) (B2) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -485.37584 -63.36387 -57.18429 -57.18201 -57.18194 Alpha occ. eigenvalues -- -10.60533 -10.55911 -10.55909 -10.55738 -10.55728 Alpha occ. eigenvalues -- -10.55397 -9.02828 -6.85119 -6.84252 -6.84232 Alpha occ. eigenvalues -- -2.88510 -2.88193 -2.88170 -2.87371 -2.87371 Alpha occ. eigenvalues -- -0.98819 -0.90480 -0.86242 -0.82069 -0.70822 Alpha occ. eigenvalues -- -0.68602 -0.60560 -0.53972 -0.53793 -0.50567 Alpha occ. eigenvalues -- -0.48671 -0.46859 -0.42315 -0.41244 -0.38151 Alpha occ. eigenvalues -- -0.35060 -0.32500 -0.30069 Alpha virt. eigenvalues -- 0.00911 0.00945 0.03624 0.08178 0.09680 Alpha virt. eigenvalues -- 0.10924 0.13524 0.13702 0.17776 0.21907 Alpha virt. eigenvalues -- 0.23296 0.26807 0.27242 0.28419 0.28809 Alpha virt. eigenvalues -- 0.29456 0.29471 0.32072 0.34000 0.34493 Alpha virt. eigenvalues -- 0.35554 0.35686 0.37742 0.38852 0.39185 Alpha virt. eigenvalues -- 0.41349 0.42222 0.43278 0.43893 0.44080 Alpha virt. eigenvalues -- 0.44559 0.46369 0.47027 0.48722 0.50221 Alpha virt. eigenvalues -- 0.50961 0.52254 0.55145 0.55397 0.58418 Alpha virt. eigenvalues -- 0.58553 0.61387 0.62068 0.64101 0.66172 Alpha virt. eigenvalues -- 0.68739 0.70608 0.73065 0.76069 0.76331 Alpha virt. eigenvalues -- 0.77349 0.78864 0.80023 0.80634 0.80907 Alpha virt. eigenvalues -- 0.88171 0.88469 0.90143 0.90425 0.93585 Alpha virt. eigenvalues -- 0.97812 1.00545 1.02590 1.03897 1.06283 Alpha virt. eigenvalues -- 1.06948 1.07989 1.10937 1.11032 1.15668 Alpha virt. eigenvalues -- 1.17762 1.18539 1.20028 1.24033 1.27873 Alpha virt. eigenvalues -- 1.28577 1.28621 1.30188 1.31326 1.32107 Alpha virt. eigenvalues -- 1.34439 1.37561 1.39336 1.41468 1.43258 Alpha virt. eigenvalues -- 1.43604 1.47241 1.49650 1.49983 1.50091 Alpha virt. eigenvalues -- 1.52484 1.53975 1.54053 1.60305 1.63811 Alpha virt. eigenvalues -- 1.64455 1.70335 1.71371 1.75189 1.79349 Alpha virt. eigenvalues -- 1.81625 1.84704 1.84774 1.91008 1.92743 Alpha virt. eigenvalues -- 1.95347 1.95673 1.97303 2.02977 2.03420 Alpha virt. eigenvalues -- 2.03697 2.05569 2.10299 2.14799 2.16985 Alpha virt. eigenvalues -- 2.17777 2.24010 2.24797 2.24860 2.29345 Alpha virt. eigenvalues -- 2.34161 2.34589 2.38225 2.42214 2.43799 Alpha virt. eigenvalues -- 2.47512 2.47959 2.53191 2.53692 2.54368 Alpha virt. eigenvalues -- 2.61163 2.64744 2.64829 2.66969 2.69986 Alpha virt. eigenvalues -- 2.70406 2.70997 2.71659 2.73718 2.75039 Alpha virt. eigenvalues -- 2.75810 2.79450 2.82446 2.84320 2.85233 Alpha virt. eigenvalues -- 2.90683 2.91787 2.94456 2.95137 2.99491 Alpha virt. eigenvalues -- 3.00721 3.01945 3.02137 3.04912 3.05458 Alpha virt. eigenvalues -- 3.07207 3.08756 3.10296 3.10499 3.11372 Alpha virt. eigenvalues -- 3.11420 3.12425 3.12522 3.13245 3.17167 Alpha virt. eigenvalues -- 3.22553 3.25144 3.28662 3.28771 3.30371 Alpha virt. eigenvalues -- 3.33459 3.33629 3.34399 3.34426 3.39150 Alpha virt. eigenvalues -- 3.39652 3.41119 3.45002 3.52175 3.57730 Alpha virt. eigenvalues -- 3.61154 3.61668 3.62851 3.63175 3.72780 Alpha virt. eigenvalues -- 3.73728 3.74190 3.75939 3.76573 3.77377 Alpha virt. eigenvalues -- 3.78625 3.79252 3.80562 3.82075 3.83792 Alpha virt. eigenvalues -- 3.84321 3.87272 3.94141 4.00127 4.00779 Alpha virt. eigenvalues -- 4.04194 4.05438 4.06900 4.08503 4.12052 Alpha virt. eigenvalues -- 4.12207 4.12717 4.15762 4.20086 4.22665 Alpha virt. eigenvalues -- 4.26722 4.27203 4.27822 4.29120 4.30009 Alpha virt. eigenvalues -- 4.30580 4.30871 4.37348 4.39454 4.49591 Alpha virt. eigenvalues -- 4.57365 4.61944 4.62657 4.65304 4.67840 Alpha virt. eigenvalues -- 4.69589 4.71078 4.73196 4.81232 4.86080 Alpha virt. eigenvalues -- 4.91375 4.94153 4.97863 4.98917 5.02619 Alpha virt. eigenvalues -- 5.08197 5.09769 5.16043 5.32837 5.46076 Alpha virt. eigenvalues -- 5.46174 5.55795 5.64117 5.78665 5.82761 Alpha virt. eigenvalues -- 5.95198 5.98977 6.26415 6.67763 8.51186 Alpha virt. eigenvalues -- 11.96353 12.55076 12.86144 13.12143 15.41950 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.907208 0.481011 -0.059167 -0.028810 -0.063856 0.488058 2 C 0.481011 5.005419 0.443370 -0.040997 -0.028810 -0.055855 3 C -0.059167 0.443370 5.043565 0.443370 -0.059167 -0.030739 4 C -0.028810 -0.040997 0.443370 5.005419 0.481011 -0.055855 5 C -0.063856 -0.028810 -0.059167 0.481011 4.907208 0.488058 6 C 0.488058 -0.055855 -0.030739 -0.055855 0.488058 4.933314 7 H -0.049705 0.006688 -0.000961 0.006688 -0.049705 0.434820 8 H 0.006336 -0.001039 0.006888 -0.050806 0.433379 -0.049546 9 H -0.001404 0.007883 -0.053426 0.425473 -0.039608 0.006029 10 Br 0.008166 -0.075562 0.295749 -0.075562 0.008166 -0.000636 11 H -0.039608 0.425473 -0.053426 0.007883 -0.001404 0.006029 12 H 0.433379 -0.050806 0.006888 -0.001039 0.006336 -0.049546 7 8 9 10 11 12 1 C -0.049705 0.006336 -0.001404 0.008166 -0.039608 0.433379 2 C 0.006688 -0.001039 0.007883 -0.075562 0.425473 -0.050806 3 C -0.000961 0.006888 -0.053426 0.295749 -0.053426 0.006888 4 C 0.006688 -0.050806 0.425473 -0.075562 0.007883 -0.001039 5 C -0.049705 0.433379 -0.039608 0.008166 -0.001404 0.006336 6 C 0.434820 -0.049546 0.006029 -0.000636 0.006029 -0.049546 7 H 0.559859 -0.007685 -0.000236 0.000059 -0.000236 -0.007685 8 H -0.007685 0.563411 -0.007506 -0.000329 0.000058 -0.000274 9 H -0.000236 -0.007506 0.528991 -0.001938 -0.000131 0.000058 10 Br 0.000059 -0.000329 -0.001938 34.944259 -0.001938 -0.000329 11 H -0.000236 0.000058 -0.000131 -0.001938 0.528991 -0.007506 12 H -0.007685 -0.000274 0.000058 -0.000329 -0.007506 0.563411 Mulliken charges: 1 1 C -0.081609 2 C -0.116776 3 C 0.017054 4 C -0.116776 5 C -0.081609 6 C -0.114133 7 H 0.108100 8 H 0.107113 9 H 0.135814 10 Br -0.100106 11 H 0.135814 12 H 0.107113 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.025504 2 C 0.019038 3 C 0.017054 4 C 0.019038 5 C 0.025504 6 C -0.006033 10 Br -0.100106 Electronic spatial extent (au): = 1218.2058 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.8477 Tot= 1.8477 Quadrupole moment (field-independent basis, Debye-Ang): XX= -57.2972 YY= -48.1499 ZZ= -49.0358 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -5.8029 YY= 3.3444 ZZ= 2.4585 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 41.6010 XYY= 0.0000 XXY= 0.0000 XXZ= 24.8969 XZZ= 0.0000 YZZ= 0.0000 YYZ= 11.4855 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -67.1851 YYYY= -282.1086 ZZZZ= -1013.5906 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -69.5366 XXZZ= -215.7968 YYZZ= -222.2560 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.327424247445D+02 E-N=-7.555413069180D+03 KE= 2.801479525449D+03 Symmetry A1 KE= 2.007857135610D+03 Symmetry A2 KE= 4.528682643302D+01 Symmetry B1 KE= 3.370862532570D+02 Symmetry B2 KE= 4.112493101494D+02 1\1\GINC-COMPUTE-0-10\SP\RM062X\CC-pVTZ\C6H5Br1\ZDANOVSKAIA\25-May-201 6\0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\5. Bromobenzene (C6H5Br)\ \0,1\C\C,1,1.3876925\C,2,1.385494,1,118.97224\C,3,1.385494,2,121.40241 ,1,0.,0\C,4,1.3876925,3,118.97224,2,0.,0\C,1,1.3874033,2,120.42342,3,0 .,0\H,6,1.080967,1,120.09687,2,180.,0\H,5,1.0814487,4,119.36258,3,180. ,0\H,4,1.0803482,3,120.08839,2,180.,0\Br,3,1.895937,2,119.29879,1,180. ,0\H,2,1.0803482,1,120.93937,6,180.,0\H,1,1.0814487,2,119.36258,3,180. ,0\\Version=EM64L-G09RevD.01\State=1-A1\HF=-2805.8668954\RMSD=6.994e-0 9\Dipole=-0.004143,0.,-0.7269194\Quadrupole=2.4864431,-4.3143034,1.827 8603,0.,-0.0037537,0.\PG=C02V [C2(H1C1C1Br1),SGV(C4H4)]\\@ WOE UNTO THEM THAT CALL EVIL GOOD, AND GOOD EVIL Job cpu time: 0 days 0 hours 17 minutes 26.5 seconds. File lengths (MBytes): RWF= 54 Int= 0 D2E= 0 Chk= 6 Scr= 1 Normal termination of Gaussian 09 at Wed May 25 20:13:02 2016.