Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567445/Gau-18256.inp" -scrdir="/scratch/webmo-5066/567445/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 18257. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------------------------------- 6. Acetic Anhydride NMR ((CH3CO)2O) ----------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 O 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 H 5 B5 4 A4 3 D3 0 H 5 B6 4 A5 3 D4 0 H 5 B7 4 A6 3 D5 0 O 4 B8 5 A7 6 D6 0 O 2 B9 1 A8 3 D7 0 H 1 B10 2 A9 3 D8 0 H 1 B11 2 A10 3 D9 0 H 1 B12 2 A11 3 D10 0 Variables: B1 1.49794 B2 1.39581 B3 1.36394 B4 1.49745 B5 1.08432 B6 1.08866 B7 1.08925 B8 1.1942 B9 1.18632 B10 1.08556 B11 1.0876 B12 1.08726 A1 117.50232 A2 123.10037 A3 110.06528 A4 109.42816 A5 109.34471 A6 109.38484 A7 126.06588 A8 125.37577 A9 107.55712 A10 109.23419 A11 111.4731 D1 34.32247 D2 -171.95392 D3 -177.1724 D4 -55.82143 D5 61.60104 D6 1.37055 D7 -175.78748 D8 156.28458 D9 -84.32303 D10 34.2463 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.497937 3 8 0 1.238073 0.000000 2.142501 4 6 0 2.334518 0.644253 1.649460 5 6 0 3.543568 0.295483 2.461198 6 1 0 4.398427 0.851042 2.091972 7 1 0 3.355579 0.530506 3.507430 8 1 0 3.726732 -0.776202 2.394863 9 8 0 2.303670 1.394382 0.720766 10 8 0 -0.964678 -0.071053 2.184740 11 1 0 -0.947587 -0.416266 -0.327465 12 1 0 0.101580 1.021856 -0.358289 13 1 0 0.836377 -0.569390 -0.398008 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.497937 0.000000 3 O 2.474497 1.395810 0.000000 4 C 2.930146 2.426519 1.363944 0.000000 5 C 4.324544 3.684027 2.346101 1.497452 0.000000 6 H 4.944368 4.519215 3.273326 2.120919 1.084323 7 H 4.882972 3.947077 2.574550 2.123101 1.088659 8 H 4.497376 3.910945 2.619084 2.124047 1.089246 9 O 2.787597 2.802711 2.258567 1.194202 2.402921 10 O 2.389297 1.186318 2.204301 3.418022 4.531563 11 H 1.085555 2.098402 3.324321 3.975568 5.334201 12 H 1.087602 2.121340 2.930828 3.026492 4.508260 13 H 1.087264 2.149033 2.634341 2.812380 4.031371 6 7 8 9 10 6 H 0.000000 7 H 1.787120 0.000000 8 H 1.786292 1.755860 0.000000 9 O 2.561919 3.101337 3.088549 0.000000 10 O 5.442587 4.558071 4.748759 3.869472 0.000000 11 H 6.003299 5.841236 5.421243 3.866251 2.535870 12 H 4.949328 5.076783 4.894342 2.480390 2.966201 13 H 4.572289 4.775836 4.024556 2.694625 3.187903 11 12 13 11 H 0.000000 12 H 1.780419 0.000000 13 H 1.791912 1.753159 0.000000 Stoichiometry C4H6O3 Framework group C1[X(C4H6O3)] Deg. of freedom 33 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.572114 1.115345 0.429973 2 6 0 1.253379 -0.286939 0.010660 3 8 0 -0.075346 -0.702937 0.109257 4 6 0 -1.134327 0.129053 -0.106831 5 6 0 -2.411886 -0.558526 0.263898 6 1 0 -3.249745 0.092839 0.041473 7 1 0 -2.493205 -1.491816 -0.290659 8 1 0 -2.393360 -0.808820 1.323835 9 8 0 -1.033506 1.231842 -0.553831 10 8 0 2.047666 -1.098457 -0.332700 11 1 0 2.623976 1.146354 0.696535 12 1 0 1.378293 1.790436 -0.400427 13 1 0 0.947843 1.433833 1.261233 --------------------------------------------------------------------- Rotational constants (GHZ): 5.3718072 1.9052044 1.5259380 Standard basis: CC-pVTZ (5D, 7F) There are 335 symmetry adapted cartesian basis functions of A symmetry. There are 294 symmetry adapted basis functions of A symmetry. 294 basis functions, 466 primitive gaussians, 335 cartesian basis functions 27 alpha electrons 27 beta electrons nuclear repulsion energy 304.7700436251 Hartrees. NAtoms= 13 NActive= 13 NUniq= 13 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 294 RedAO= T EigKep= 6.47D-04 NBF= 294 NBsUse= 294 1.00D-06 EigRej= -1.00D+00 NBFU= 294 ExpMin= 1.03D-01 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -381.723296221 A.U. after 14 cycles NFock= 14 Conv=0.60D-08 -V/T= 2.0053 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 294 NBasis= 294 NAE= 27 NBE= 27 NFC= 0 NFV= 0 NROrb= 294 NOA= 27 NOB= 27 NVA= 267 NVB= 267 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 13 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.40D-13 3.33D-08 XBig12= 3.80D+00 5.38D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.40D-13 3.33D-08 XBig12= 3.77D-02 6.66D-02. 3 vectors produced by pass 2 Test12= 2.40D-13 3.33D-08 XBig12= 7.91D-04 8.14D-03. 3 vectors produced by pass 3 Test12= 2.40D-13 3.33D-08 XBig12= 9.95D-06 8.03D-04. 3 vectors produced by pass 4 Test12= 2.40D-13 3.33D-08 XBig12= 1.23D-07 8.03D-05. 3 vectors produced by pass 5 Test12= 2.40D-13 3.33D-08 XBig12= 1.08D-09 9.17D-06. 3 vectors produced by pass 6 Test12= 2.40D-13 3.33D-08 XBig12= 1.47D-11 1.34D-06. 3 vectors produced by pass 7 Test12= 2.40D-13 3.33D-08 XBig12= 1.33D-13 8.21D-08. InvSVY: IOpt=1 It= 1 EMax= 6.66D-16 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 161.2773 Anisotropy = 40.0111 XX= 157.4332 YX= 9.6245 ZX= 3.1036 XY= 13.7116 YY= 174.8927 ZY= 16.2881 XZ= 10.5270 YZ= 13.1564 ZZ= 151.5061 Eigenvalues: 144.2628 151.6178 187.9514 2 C Isotropic = 5.8816 Anisotropy = 111.3185 XX= -79.3596 YX= -106.7409 ZX= -16.1563 XY= -72.9219 YY= 28.1707 ZY= -3.9745 XZ= -1.2137 YZ= 1.7210 ZZ= 68.8337 Eigenvalues: -130.6162 68.1671 80.0939 3 O Isotropic = -16.0657 Anisotropy = 190.0608 XX= 36.8282 YX= 89.9836 ZX= 11.1905 XY= -74.9255 YY= -163.5391 ZY= 50.6653 XZ= 78.6580 YZ= 12.5176 ZZ= 78.5137 Eigenvalues: -167.6099 8.7712 110.6414 4 C Isotropic = 2.7884 Anisotropy = 103.4709 XX= -110.2951 YX= 28.2925 ZX= 1.4367 XY= 71.0069 YY= 50.3747 ZY= 4.9264 XZ= -11.9815 YZ= 8.1790 ZZ= 68.2855 Eigenvalues: -124.6438 61.2399 71.7690 5 C Isotropic = 164.7457 Anisotropy = 47.3572 XX= 192.3151 YX= 3.8139 ZX= -4.8122 XY= 15.8358 YY= 156.2266 ZY= -5.9212 XZ= -10.4610 YZ= -4.5731 ZZ= 145.6953 Eigenvalues: 143.2510 154.6689 196.3171 6 H Isotropic = 29.9927 Anisotropy = 7.4602 XX= 33.8792 YX= -4.2544 ZX= 1.3778 XY= -0.3387 YY= 29.4208 ZY= -1.1942 XZ= -0.1396 YZ= -0.8805 ZZ= 26.6780 Eigenvalues: 26.3264 28.6855 34.9662 7 H Isotropic = 29.6270 Anisotropy = 6.5936 XX= 29.1664 YX= 1.9815 ZX= 0.6604 XY= 0.7822 YY= 32.3135 ZY= 2.7860 XZ= 0.7743 YZ= 2.6624 ZZ= 27.4010 Eigenvalues: 26.1860 28.6723 34.0227 8 H Isotropic = 29.6275 Anisotropy = 5.9264 XX= 28.9628 YX= 0.6624 ZX= -1.6280 XY= 0.0415 YY= 27.5130 ZY= -2.2519 XZ= -0.7991 YZ= -2.1013 ZZ= 32.4067 Eigenvalues: 26.6799 28.6243 33.5784 9 O Isotropic = -183.5486 Anisotropy = 689.6054 XX= -337.0598 YX= 112.3891 ZX= 11.9245 XY= 78.1419 YY= -377.9069 ZY= 238.4266 XZ= 22.8835 YZ= 289.8350 ZZ= 164.3210 Eigenvalues: -522.0541 -304.7800 276.1883 10 O Isotropic = -229.8784 Anisotropy = 738.0424 XX= -592.5762 YX= 93.2386 ZX= 124.3558 XY= -1.4205 YY= -285.6876 ZY= -164.2066 XZ= 118.4282 YZ= -199.2274 ZZ= 188.6285 Eigenvalues: -628.2147 -323.5704 262.1498 11 H Isotropic = 29.6932 Anisotropy = 7.5560 XX= 33.8007 YX= -0.4849 ZX= 1.2205 XY= 2.6699 YY= 28.2032 ZY= 1.2450 XZ= 3.1078 YZ= 1.0793 ZZ= 27.0756 Eigenvalues: 26.0936 28.2554 34.7305 12 H Isotropic = 28.8710 Anisotropy = 5.8302 XX= 28.5962 YX= 0.2067 ZX= 0.7870 XY= 0.0358 YY= 29.9753 ZY= -3.7262 XZ= 1.1449 YZ= -3.3964 ZZ= 28.0416 Eigenvalues: 25.1133 28.7419 32.7578 13 H Isotropic = 29.8308 Anisotropy = 4.8565 XX= 30.4369 YX= 0.7082 ZX= -0.9231 XY= -0.4492 YY= 28.5580 ZY= 3.3254 XZ= -1.4888 YZ= 2.8234 ZZ= 30.4975 Eigenvalues: 26.1438 30.2801 33.0685 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.69347 -19.63831 -19.63453 -10.70002 -10.69488 Alpha occ. eigenvalues -- -10.56237 -10.55649 -1.27291 -1.20662 -1.15651 Alpha occ. eigenvalues -- -0.88845 -0.85417 -0.75740 -0.62330 -0.59995 Alpha occ. eigenvalues -- -0.59107 -0.58465 -0.53661 -0.53021 -0.51128 Alpha occ. eigenvalues -- -0.49486 -0.47841 -0.46039 -0.45232 -0.41006 Alpha occ. eigenvalues -- -0.38341 -0.36528 Alpha virt. eigenvalues -- 0.00798 0.05483 0.06126 0.09040 0.11975 Alpha virt. eigenvalues -- 0.13230 0.14080 0.14922 0.18670 0.19415 Alpha virt. eigenvalues -- 0.20220 0.23899 0.26520 0.28059 0.28431 Alpha virt. eigenvalues -- 0.29748 0.32822 0.33367 0.34886 0.36572 Alpha virt. eigenvalues -- 0.41440 0.41606 0.44102 0.45460 0.46042 Alpha virt. eigenvalues -- 0.47182 0.48029 0.48783 0.49244 0.49606 Alpha virt. eigenvalues -- 0.51900 0.54924 0.57244 0.58810 0.59920 Alpha virt. eigenvalues -- 0.61070 0.62974 0.66777 0.67856 0.69100 Alpha virt. eigenvalues -- 0.72360 0.74574 0.76389 0.77888 0.79121 Alpha virt. eigenvalues -- 0.81650 0.84348 0.86635 0.89750 0.90210 Alpha virt. eigenvalues -- 0.92247 0.95260 0.95570 0.98210 1.01605 Alpha virt. eigenvalues -- 1.02567 1.03831 1.05940 1.07356 1.08362 Alpha virt. eigenvalues -- 1.10345 1.11923 1.13411 1.13869 1.16384 Alpha virt. eigenvalues -- 1.18128 1.21882 1.24453 1.26431 1.27214 Alpha virt. eigenvalues -- 1.29340 1.30637 1.32917 1.34491 1.35741 Alpha virt. eigenvalues -- 1.37627 1.39942 1.44204 1.47739 1.50929 Alpha virt. eigenvalues -- 1.52494 1.53532 1.55058 1.56359 1.58805 Alpha virt. eigenvalues -- 1.64789 1.71054 1.71526 1.78734 1.85889 Alpha virt. eigenvalues -- 1.90538 1.94899 1.98038 2.02257 2.03454 Alpha virt. eigenvalues -- 2.06342 2.13375 2.15230 2.19967 2.21057 Alpha virt. eigenvalues -- 2.23272 2.26458 2.28443 2.29695 2.35669 Alpha virt. eigenvalues -- 2.37496 2.41998 2.46025 2.48872 2.52264 Alpha virt. eigenvalues -- 2.55251 2.55982 2.57895 2.60438 2.62254 Alpha virt. eigenvalues -- 2.63304 2.70014 2.72197 2.77066 2.78159 Alpha virt. eigenvalues -- 2.79242 2.80652 2.82894 2.84363 2.86577 Alpha virt. eigenvalues -- 2.88726 2.91582 2.92991 2.95432 2.96251 Alpha virt. eigenvalues -- 2.97439 2.98997 3.00609 3.03262 3.05476 Alpha virt. eigenvalues -- 3.07561 3.08139 3.10021 3.10957 3.12205 Alpha virt. eigenvalues -- 3.15040 3.19005 3.21388 3.24498 3.25923 Alpha virt. eigenvalues -- 3.26922 3.28180 3.29076 3.31163 3.32721 Alpha virt. eigenvalues -- 3.36258 3.37271 3.38108 3.41042 3.42554 Alpha virt. eigenvalues -- 3.43582 3.47089 3.48183 3.50187 3.52276 Alpha virt. eigenvalues -- 3.55137 3.56125 3.60502 3.66443 3.67517 Alpha virt. eigenvalues -- 3.69880 3.75273 3.76162 3.79276 3.83416 Alpha virt. eigenvalues -- 3.83463 3.87651 3.88059 3.89352 3.91139 Alpha virt. eigenvalues -- 3.93638 3.97800 3.99280 3.99619 4.02457 Alpha virt. eigenvalues -- 4.05140 4.05430 4.06954 4.08539 4.14777 Alpha virt. eigenvalues -- 4.16609 4.17807 4.21870 4.23039 4.24185 Alpha virt. eigenvalues -- 4.27269 4.32119 4.32287 4.35793 4.43065 Alpha virt. eigenvalues -- 4.49400 4.51609 4.54586 4.72817 4.75482 Alpha virt. eigenvalues -- 4.77633 4.80590 4.81967 4.87808 4.89304 Alpha virt. eigenvalues -- 5.00005 5.03471 5.07734 5.08823 5.09867 Alpha virt. eigenvalues -- 5.10890 5.11268 5.14342 5.15692 5.17661 Alpha virt. eigenvalues -- 5.18032 5.19323 5.20216 5.21839 5.23065 Alpha virt. eigenvalues -- 5.25467 5.27622 5.31144 5.32762 5.37131 Alpha virt. eigenvalues -- 5.40700 5.49834 5.58135 5.61521 5.65667 Alpha virt. eigenvalues -- 5.69285 5.70719 5.71757 5.74548 5.84061 Alpha virt. eigenvalues -- 5.96150 5.99940 6.08727 6.13969 6.24473 Alpha virt. eigenvalues -- 6.25962 6.28964 6.31810 6.37165 6.39191 Alpha virt. eigenvalues -- 6.42064 6.48962 6.61440 6.64974 6.74191 Alpha virt. eigenvalues -- 6.81762 6.83511 6.83856 6.92378 6.96301 Alpha virt. eigenvalues -- 7.03127 7.04827 7.12470 7.31278 7.34236 Alpha virt. eigenvalues -- 9.15591 9.41759 11.32398 13.29554 13.37671 Alpha virt. eigenvalues -- 13.53218 13.65637 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.115337 0.317911 -0.092991 -0.008586 -0.000399 0.000138 2 C 0.317911 4.375783 0.320469 -0.033814 -0.001878 0.000019 3 O -0.092991 0.320469 7.863739 0.351523 -0.073571 0.004909 4 C -0.008586 -0.033814 0.351523 4.391126 0.341497 -0.045665 5 C -0.000399 -0.001878 -0.073571 0.341497 4.972802 0.399667 6 H 0.000138 0.000019 0.004909 -0.045665 0.399667 0.550802 7 H 0.000128 -0.000062 0.002972 -0.025599 0.382891 -0.024576 8 H -0.000143 0.000403 0.002628 -0.026752 0.380265 -0.024444 9 O -0.000600 -0.003316 -0.093481 0.737479 -0.072597 0.005829 10 O -0.091455 0.788049 -0.100171 -0.000387 -0.000644 0.000013 11 H 0.382575 -0.026441 0.003405 0.001128 0.000129 -0.000007 12 H 0.365689 -0.013900 0.002159 -0.003188 0.000526 -0.000026 13 H 0.386907 -0.035222 0.003257 0.002567 -0.000183 0.000010 7 8 9 10 11 12 1 C 0.000128 -0.000143 -0.000600 -0.091455 0.382575 0.365689 2 C -0.000062 0.000403 -0.003316 0.788049 -0.026441 -0.013900 3 O 0.002972 0.002628 -0.093481 -0.100171 0.003405 0.002159 4 C -0.025599 -0.026752 0.737479 -0.000387 0.001128 -0.003188 5 C 0.382891 0.380265 -0.072597 -0.000644 0.000129 0.000526 6 H -0.024576 -0.024444 0.005829 0.000013 -0.000007 -0.000026 7 H 0.556258 -0.032476 0.000949 0.000034 -0.000002 -0.000051 8 H -0.032476 0.568833 0.000833 0.000012 -0.000021 -0.000009 9 O 0.000949 0.000833 7.729683 -0.000175 0.001586 0.006093 10 O 0.000034 0.000012 -0.000175 7.665711 0.002908 0.000526 11 H -0.000002 -0.000021 0.001586 0.002908 0.537719 -0.017422 12 H -0.000051 -0.000009 0.006093 0.000526 -0.017422 0.530831 13 H 0.000017 0.000060 -0.004477 0.002679 -0.026332 -0.032007 13 1 C 0.386907 2 C -0.035222 3 O 0.003257 4 C 0.002567 5 C -0.000183 6 H 0.000010 7 H 0.000017 8 H 0.000060 9 O -0.004477 10 O 0.002679 11 H -0.026332 12 H -0.032007 13 H 0.565831 Mulliken charges: 1 1 C -0.374510 2 C 0.311997 3 O -0.194848 4 C 0.318669 5 C -0.328505 6 H 0.133332 7 H 0.139518 8 H 0.130809 9 O -0.307807 10 O -0.267101 11 H 0.140773 12 H 0.160779 13 H 0.136893 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.063935 2 C 0.311997 3 O -0.194848 4 C 0.318669 5 C 0.075154 9 O -0.307807 10 O -0.267101 Electronic spatial extent (au): = 789.9948 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -1.9415 Y= 0.7379 Z= 1.6935 Tot= 2.6799 Quadrupole moment (field-independent basis, Debye-Ang): XX= -39.2387 YY= -44.8541 ZZ= -39.7113 XY= 8.1418 XZ= 0.4407 YZ= 0.9689 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.0293 YY= -3.5860 ZZ= 1.5567 XY= 8.1418 XZ= 0.4407 YZ= 0.9689 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -17.6609 YYY= -1.5824 ZZZ= -0.8057 XYY= 0.0219 XXY= 4.8390 XXZ= 5.0080 XZZ= 0.5727 YZZ= -1.0667 YYZ= 1.4653 XYZ= -2.9474 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -672.9825 YYYY= -241.1434 ZZZZ= -73.9018 XXXY= 17.7997 XXXZ= 8.7073 YYYX= 4.7911 YYYZ= -0.0555 ZZZX= -3.5538 ZZZY= -1.2269 XXYY= -160.4617 XXZZ= -125.9300 YYZZ= -51.1898 XXYZ= -1.1809 YYXZ= 0.2730 ZZXY= -0.0997 N-N= 3.047700436251D+02 E-N=-1.503674416219D+03 KE= 3.797131819552D+02 1\1\GINC-COMPUTE-0-15\SP\RM062X\CC-pVTZ\C4H6O3\ZDANOVSKAIA\26-May-2016 \0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\6. Acetic Anhydride NMR (( CH3CO)2O)\\0,1\C\C,1,1.4979372\O,2,1.3958101,1,117.50232\C,3,1.3639436 ,2,123.10037,1,34.322475,0\C,4,1.4974518,3,110.06528,2,-171.95392,0\H, 5,1.0843233,4,109.42816,3,-177.1724,0\H,5,1.0886586,4,109.34471,3,-55. 821429,0\H,5,1.0892462,4,109.38484,3,61.601035,0\O,4,1.1942016,5,126.0 6588,6,1.3705532,0\O,2,1.1863176,1,125.37577,3,-175.78748,0\H,1,1.0855 554,2,107.55712,3,156.28458,0\H,1,1.0876022,2,109.23419,3,-84.323034,0 \H,1,1.0872636,2,111.4731,3,34.246296,0\\Version=EM64L-G09RevD.01\Stat e=1-A\HF=-381.7232962\RMSD=6.037e-09\Dipole=0.9292638,-0.4008353,-0.29 57621\Quadrupole=-0.4614676,-0.1891859,0.6506535,-1.8985291,5.7627346, 2.341099\PG=C01 [X(C4H6O3)]\\@ IT IS THE GODS' CUSTOM TO BRING LOW ALL THINGS OF SURPASSING GREATNESS. -- HERODOTUS IT IS THE LOFTY PINE THAT BY THE STORM IS OFTENER TOSSED; TOWERS FALL WITH HEAVIER CRASH WHICH HIGHER SOAR. -- HORACE THE BIGGER THEY COME, THE HARDER THEY FALL. -- BOB FITZSIMONS HEAVYWEIGHT CHAMPION, 1897-1899 Job cpu time: 0 days 0 hours 20 minutes 0.4 seconds. File lengths (MBytes): RWF= 53 Int= 0 D2E= 0 Chk= 6 Scr= 1 Normal termination of Gaussian 09 at Thu May 26 06:27:30 2016.