Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/567497/Gau-19512.inp" -scrdir="/scratch/webmo-5066/567497/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 19513. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 27-May-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. -------------------------------------- #N M062X/cc-pVTZ NMR Geom=Connectivity -------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,74=-55/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; -------------------------------- 8. Maleic Anhydride NMR (C4H2O3) -------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 O 1 B4 2 A3 3 D2 0 O 4 B5 3 A4 2 D3 0 H 3 B6 4 A5 5 D4 0 H 2 B7 3 A6 4 D5 0 O 1 B8 2 A7 3 D6 0 Variables: B1 1.49101 B2 1.32353 B3 1.49101 B4 1.37881 B5 1.18398 B6 1.07753 B7 1.07753 B8 1.18398 A1 107.97329 A2 107.97329 A3 107.5738 A4 129.56474 A5 121.92093 A6 130.10577 A7 129.56474 D1 0. D2 0. D3 180. D4 180. D5 180. D6 180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.491009 3 6 0 1.258940 0.000000 1.899414 4 6 0 2.134208 0.000000 0.692347 5 8 0 1.314457 0.000000 -0.416309 6 8 0 3.315826 0.000000 0.617629 7 1 0 1.664899 0.000000 2.897545 8 1 0 -0.914582 0.000000 2.060750 9 8 0 -0.912735 0.000000 -0.754134 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.491009 0.000000 3 C 2.278751 1.323528 0.000000 4 C 2.243700 2.278751 1.491009 0.000000 5 O 1.378807 2.316389 2.316389 1.378807 0.000000 6 O 3.372858 3.428920 2.423583 1.183978 2.252667 7 H 3.341804 2.179502 1.077528 2.254584 3.332332 8 H 2.254584 1.077528 2.179502 3.341804 3.332332 9 O 1.183978 2.423583 3.428920 3.372858 2.252667 6 7 8 9 6 O 0.000000 7 H 2.814885 0.000000 8 H 4.469782 2.711816 0.000000 9 O 4.445500 4.469782 2.814885 0.000000 Stoichiometry C4H2O3 Framework group C2V[C2(O),SGV(C4H2O2)] Deg. of freedom 8 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.121850 0.162400 2 6 0 0.000000 0.661764 -1.255848 3 6 0 0.000000 -0.661764 -1.255848 4 6 0 0.000000 -1.121850 0.162400 5 8 0 0.000000 0.000000 0.964000 6 8 0 0.000000 -2.222750 0.598087 7 1 0 0.000000 -1.355908 -2.080002 8 1 0 0.000000 1.355908 -2.080002 9 8 0 0.000000 2.222750 0.598087 --------------------------------------------------------------------- Rotational constants (GHZ): 6.8909698 2.4960597 1.8323445 Standard basis: CC-pVTZ (5D, 7F) There are 99 symmetry adapted cartesian basis functions of A1 symmetry. There are 40 symmetry adapted cartesian basis functions of A2 symmetry. There are 45 symmetry adapted cartesian basis functions of B1 symmetry. There are 91 symmetry adapted cartesian basis functions of B2 symmetry. There are 83 symmetry adapted basis functions of A1 symmetry. There are 37 symmetry adapted basis functions of A2 symmetry. There are 41 symmetry adapted basis functions of B1 symmetry. There are 77 symmetry adapted basis functions of B2 symmetry. 238 basis functions, 398 primitive gaussians, 275 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 276.5272200900 Hartrees. NAtoms= 9 NActive= 9 NUniq= 5 SFac= 3.24D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 238 RedAO= T EigKep= 1.42D-04 NBF= 83 37 41 77 NBsUse= 238 1.00D-06 EigRej= -1.00D+00 NBFU= 83 37 41 77 ExpMin= 1.03D-01 ExpMax= 1.53D+04 ExpMxC= 5.22D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 1009 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 1009 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (B2) (A1) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (B1) (A1) (B1) (B2) Virtual (A2) (B1) (A2) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A1) (B2) (B1) (A2) (A1) (B2) (A1) (A2) (B2) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (B1) (B2) (A1) (B1) (A2) (B2) (A2) (A1) (B1) (A1) (B2) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (B2) (A2) (B1) (A1) (B2) (A1) (B2) (B2) (A1) (A2) (A1) (A1) (B2) (A2) (B2) (B1) (A1) (A1) (B2) (B1) (B2) (A1) (A2) (B1) (B1) (B2) (A2) (A1) (B1) (A1) (A2) (B2) (A1) (B2) (A1) (B2) (A1) (A2) (B2) (B2) (B1) (A1) (B1) (A1) (A2) (B1) (A1) (B2) (B2) (A1) (A1) (B2) (B2) (A2) (B1) (A1) (B1) (A2) (A1) (B1) (A2) (B2) (A1) (A1) (B2) (B1) (A2) (B1) (B2) (B1) (A2) (A1) (B2) (A2) (B2) (A1) (B2) (A1) (A1) (A2) (B2) (A2) (A1) (A1) (B2) (B1) (B1) (B2) (B1) (B2) (A1) (A1) (B1) (A2) (B1) (B2) (A2) (B2) (A2) (A1) (B2) (A1) (A1) (B2) (A2) (B2) (B2) (A1) (B1) (A1) (A1) (B2) (A1) (B1) (A2) (B2) (A1) (A2) (B1) (B2) (B2) (A2) (A1) (B2) (A1) (B1) (A1) (B1) (B2) (A2) (A1) (B2) (B2) (B1) (A1) (B2) (A2) (B1) (A2) (A1) (B2) (B2) (A1) (B1) (A1) (B1) (A2) (A2) (B2) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RM062X) = -379.295350968 A.U. after 14 cycles NFock= 14 Conv=0.66D-08 -V/T= 2.0052 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 238 NBasis= 238 NAE= 25 NBE= 25 NFC= 0 NFV= 0 NROrb= 238 NOA= 25 NOB= 25 NVA= 213 NVB= 213 **** Warning!!: The largest alpha MO coefficient is 0.24241543D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 9 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 1.78D-13 3.33D-08 XBig12= 2.90D+00 7.81D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.78D-13 3.33D-08 XBig12= 3.53D-02 1.17D-01. 3 vectors produced by pass 2 Test12= 1.78D-13 3.33D-08 XBig12= 9.96D-04 1.60D-02. 3 vectors produced by pass 3 Test12= 1.78D-13 3.33D-08 XBig12= 1.16D-05 1.13D-03. 3 vectors produced by pass 4 Test12= 1.78D-13 3.33D-08 XBig12= 1.15D-07 1.61D-04. 3 vectors produced by pass 5 Test12= 1.78D-13 3.33D-08 XBig12= 1.21D-09 9.49D-06. 3 vectors produced by pass 6 Test12= 1.78D-13 3.33D-08 XBig12= 2.27D-11 2.34D-06. 3 vectors produced by pass 7 Test12= 1.78D-13 3.33D-08 XBig12= 2.61D-13 1.87D-07. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 24 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 8.9606 Anisotropy = 98.7278 XX= 56.9229 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 31.0405 ZY= 90.7224 XZ= 0.0000 YZ= 63.4510 ZZ= -61.0816 Eigenvalues: -104.8202 56.9229 74.7791 2 C Isotropic = 29.7487 Anisotropy = 172.9272 XX= 145.0335 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 63.2310 ZY= -7.8299 XZ= 0.0000 YZ= 30.8356 ZZ= -119.0183 Eigenvalues: -119.7415 63.9541 145.0335 3 C Isotropic = 29.7487 Anisotropy = 172.9272 XX= 145.0335 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 63.2310 ZY= 7.8299 XZ= 0.0000 YZ= -30.8356 ZZ= -119.0183 Eigenvalues: -119.7415 63.9541 145.0335 4 C Isotropic = 8.9606 Anisotropy = 98.7278 XX= 56.9229 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 31.0405 ZY= -90.7224 XZ= 0.0000 YZ= -63.4510 ZZ= -61.0816 Eigenvalues: -104.8202 56.9229 74.7791 5 O Isotropic = 9.7810 Anisotropy = 258.5347 XX= 182.1374 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -123.7793 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= -29.0151 Eigenvalues: -123.7793 -29.0151 182.1374 6 O Isotropic = -211.2491 Anisotropy = 777.0799 XX= 306.8042 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -629.3425 ZY= 63.1036 XZ= 0.0000 YZ= 8.2733 ZZ= -311.2089 Eigenvalues: -633.2969 -307.2545 306.8042 7 H Isotropic = 24.4155 Anisotropy = 6.0104 XX= 24.3343 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 27.4306 ZY= -1.1241 XZ= 0.0000 YZ= -4.1235 ZZ= 21.4816 Eigenvalues: 20.4898 24.3343 28.4225 8 H Isotropic = 24.4155 Anisotropy = 6.0104 XX= 24.3343 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 27.4306 ZY= 1.1241 XZ= 0.0000 YZ= 4.1235 ZZ= 21.4816 Eigenvalues: 20.4898 24.3343 28.4225 9 O Isotropic = -211.2491 Anisotropy = 777.0799 XX= 306.8042 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= -629.3425 ZY= -63.1036 XZ= 0.0000 YZ= -8.2733 ZZ= -311.2089 Eigenvalues: -633.2969 -307.2545 306.8042 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A2) (A1) (B1) (A1) (B1) (B2) Virtual (A2) (A1) (B1) (A2) (B2) (A1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (B1) (A1) (A2) (B2) (A1) (A2) (A1) (B2) (A1) (B2) (B2) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (B2) (A2) (B2) (B1) (A2) (A1) (B1) (A1) (B2) (B1) (B2) (A2) (A1) (A1) (B2) (B1) (B2) (A1) (A2) (A1) (B2) (A2) (B1) (A1) (B2) (A1) (B2) (B2) (A1) (A2) (A1) (A1) (B2) (B2) (A2) (B1) (A1) (A1) (B2) (B1) (B2) (A1) (A2) (B1) (B2) (B1) (A2) (A1) (B1) (A1) (A2) (B2) (A1) (B2) (A1) (B2) (A1) (A2) (B2) (B1) (B2) (A1) (B1) (A2) (A1) (B1) (A1) (B2) (B2) (A1) (A2) (B2) (A1) (B2) (B1) (B1) (A1) (B1) (A1) (A2) (A2) (B2) (A1) (A1) (B1) (A2) (B2) (B1) (B2) (A1) (A2) (B1) (B2) (A2) (B2) (A1) (B2) (A1) (A2) (A1) (B2) (A2) (A1) (A1) (B1) (B2) (B1) (B2) (B1) (B2) (A1) (A2) (A1) (B1) (B2) (B1) (A2) (B2) (A2) (A1) (A1) (B2) (B2) (A1) (A2) (B2) (B2) (B1) (A1) (A1) (A1) (B2) (A1) (A2) (B1) (B2) (A1) (A2) (B1) (B2) (B2) (A2) (A1) (B2) (A1) (B1) (A1) (B1) (B2) (B2) (A2) (A1) (B2) (B1) (A1) (B2) (A2) (A2) (B1) (A1) (B2) (B2) (B1) (A1) (A1) (A2) (B1) (A2) (B2) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -19.70995 -19.65831 -19.65831 -10.71258 -10.71255 Alpha occ. eigenvalues -- -10.61201 -10.61080 -1.29450 -1.22647 -1.18392 Alpha occ. eigenvalues -- -0.96731 -0.80619 -0.73856 -0.69863 -0.61346 Alpha occ. eigenvalues -- -0.60646 -0.57760 -0.55917 -0.53197 -0.51211 Alpha occ. eigenvalues -- -0.51090 -0.42749 -0.41216 -0.39959 -0.38177 Alpha virt. eigenvalues -- -0.08116 0.06688 0.06807 0.09085 0.09409 Alpha virt. eigenvalues -- 0.14709 0.18630 0.18834 0.24934 0.25075 Alpha virt. eigenvalues -- 0.26932 0.29205 0.31575 0.33249 0.33644 Alpha virt. eigenvalues -- 0.35728 0.37198 0.39243 0.42834 0.42990 Alpha virt. eigenvalues -- 0.43734 0.45455 0.45686 0.50975 0.51619 Alpha virt. eigenvalues -- 0.54362 0.56372 0.57346 0.61985 0.63239 Alpha virt. eigenvalues -- 0.67211 0.68007 0.68189 0.68992 0.70226 Alpha virt. eigenvalues -- 0.76385 0.77064 0.80841 0.81055 0.82961 Alpha virt. eigenvalues -- 0.85492 0.85582 0.91295 0.96264 0.98067 Alpha virt. eigenvalues -- 1.00364 1.03543 1.06284 1.06576 1.11447 Alpha virt. eigenvalues -- 1.11866 1.13456 1.17391 1.17998 1.22148 Alpha virt. eigenvalues -- 1.26269 1.27304 1.28792 1.33411 1.37812 Alpha virt. eigenvalues -- 1.39754 1.49224 1.50097 1.52281 1.54529 Alpha virt. eigenvalues -- 1.56741 1.62983 1.68162 1.73174 1.74369 Alpha virt. eigenvalues -- 1.79096 1.82287 1.96588 2.00063 2.03610 Alpha virt. eigenvalues -- 2.06020 2.06147 2.07370 2.09303 2.14072 Alpha virt. eigenvalues -- 2.17444 2.20488 2.21170 2.21473 2.27052 Alpha virt. eigenvalues -- 2.29546 2.34947 2.35009 2.36423 2.39405 Alpha virt. eigenvalues -- 2.46897 2.47701 2.52549 2.55047 2.60959 Alpha virt. eigenvalues -- 2.62196 2.63398 2.69359 2.72309 2.74490 Alpha virt. eigenvalues -- 2.82203 2.83137 2.84988 2.86329 2.86983 Alpha virt. eigenvalues -- 2.90584 2.94549 2.95073 2.96844 2.99286 Alpha virt. eigenvalues -- 2.99701 3.02628 3.06898 3.08855 3.12168 Alpha virt. eigenvalues -- 3.13377 3.15718 3.15738 3.18454 3.21290 Alpha virt. eigenvalues -- 3.26300 3.27283 3.27758 3.29830 3.31516 Alpha virt. eigenvalues -- 3.36069 3.44321 3.45740 3.48171 3.55130 Alpha virt. eigenvalues -- 3.55479 3.62784 3.63564 3.65570 3.70304 Alpha virt. eigenvalues -- 3.71546 3.74147 3.80657 3.85918 3.89669 Alpha virt. eigenvalues -- 3.94130 3.94305 4.02615 4.04718 4.07081 Alpha virt. eigenvalues -- 4.08378 4.10070 4.12221 4.15673 4.21258 Alpha virt. eigenvalues -- 4.24857 4.33668 4.35960 4.40120 4.47122 Alpha virt. eigenvalues -- 4.49739 4.61065 4.64207 4.69983 4.74154 Alpha virt. eigenvalues -- 4.81274 4.93408 5.05331 5.08986 5.10842 Alpha virt. eigenvalues -- 5.15184 5.15849 5.18001 5.19536 5.25304 Alpha virt. eigenvalues -- 5.30418 5.32172 5.41019 5.41727 5.50536 Alpha virt. eigenvalues -- 5.53494 5.61301 5.68928 5.77802 5.85862 Alpha virt. eigenvalues -- 5.92283 5.92824 5.94968 6.10027 6.19989 Alpha virt. eigenvalues -- 6.24484 6.25409 6.29504 6.33933 6.34673 Alpha virt. eigenvalues -- 6.39840 6.40229 6.59788 6.66376 6.67349 Alpha virt. eigenvalues -- 6.70483 6.78170 6.79062 6.83462 6.93983 Alpha virt. eigenvalues -- 7.00265 7.01254 7.10817 7.20693 7.30828 Alpha virt. eigenvalues -- 7.34577 8.71293 10.27968 10.75339 11.24527 Alpha virt. eigenvalues -- 13.31730 13.52009 14.40115 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.287191 0.330581 -0.063675 -0.037684 0.380330 0.000465 2 C 0.330581 5.405678 0.315148 -0.063675 -0.108532 0.007229 3 C -0.063675 0.315148 5.405678 0.330581 -0.108532 -0.086034 4 C -0.037684 -0.063675 0.330581 4.287191 0.380330 0.790587 5 O 0.380330 -0.108532 -0.108532 0.380330 7.786203 -0.086831 6 O 0.000465 0.007229 -0.086034 0.790587 -0.086831 7.633361 7 H 0.004301 -0.028139 0.380810 -0.017856 0.002641 0.000768 8 H -0.017856 0.380810 -0.028139 0.004301 0.002641 -0.000101 9 O 0.790587 -0.086034 0.007229 0.000465 -0.086831 -0.000050 7 8 9 1 C 0.004301 -0.017856 0.790587 2 C -0.028139 0.380810 -0.086034 3 C 0.380810 -0.028139 0.007229 4 C -0.017856 0.004301 0.000465 5 O 0.002641 0.002641 -0.086831 6 O 0.000768 -0.000101 -0.000050 7 H 0.492558 -0.002392 -0.000101 8 H -0.002392 0.492558 0.000768 9 O -0.000101 0.000768 7.633361 Mulliken charges: 1 1 C 0.325760 2 C -0.153066 3 C -0.153066 4 C 0.325760 5 O -0.161419 6 O -0.259395 7 H 0.167410 8 H 0.167410 9 O -0.259395 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.325760 2 C 0.014344 3 C 0.014344 4 C 0.325760 5 O -0.161419 6 O -0.259395 9 O -0.259395 Electronic spatial extent (au): = 604.8719 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -4.1850 Tot= 4.1850 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.4213 YY= -47.8537 ZZ= -35.9768 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.9959 YY= -7.4364 ZZ= 4.4405 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -5.3587 XYY= 0.0000 XXY= 0.0000 XXZ= 4.3908 XZZ= 0.0000 YZZ= 0.0000 YYZ= -11.7122 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -34.1061 YYYY= -552.7920 ZZZZ= -201.5306 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -82.4100 XXZZ= -44.9827 YYZZ= -108.8686 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.765272200900D+02 E-N=-1.441574365478D+03 KE= 3.773436601608D+02 Symmetry A1 KE= 2.149552106692D+02 Symmetry A2 KE= 3.605677420957D+00 Symmetry B1 KE= 1.051320006945D+01 Symmetry B2 KE= 1.482695720012D+02 1\1\GINC-COMPUTE-0-14\SP\RM062X\CC-pVTZ\C4H2O3\ZDANOVSKAIA\27-May-2016 \0\\#N M062X/cc-pVTZ NMR Geom=Connectivity\\8. Maleic Anhydride NMR (C 4H2O3)\\0,1\C\C,1,1.4910086\C,2,1.323528,1,107.97329\C,3,1.4910086,2,1 07.97329,1,0.,0\O,1,1.3788074,2,107.5738,3,0.,0\O,4,1.183978,3,129.564 74,2,180.,0\H,3,1.0775276,4,121.92093,5,180.,0\H,2,1.0775276,3,130.105 77,4,180.,0\O,1,1.183978,2,129.56474,3,180.,0\\Version=EM64L-G09RevD.0 1\State=1-A1\HF=-379.295351\RMSD=6.560e-09\Dipole=-0.5080721,0.,1.5661 692\Quadrupole=-4.6880121,2.2274091,2.4606031,0.,-2.5917981,0.\PG=C02V [C2(O1),SGV(C4H2O2)]\\@ WOMEN HOLD UP HALF THE SKY. -- MAO TSE TUNG Job cpu time: 0 days 0 hours 6 minutes 39.6 seconds. File lengths (MBytes): RWF= 36 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Fri May 27 10:33:18 2016.