Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-5066/592178/Gau-6786.inp" -scrdir="/scratch/webmo-5066/592178/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 6787. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-Aug-2016 ****************************************** %NProcShared=4 Will use up to 4 processors via shared memory. ------------------------------------------ #N MP2/6-311+G(2d,p) NMR Geom=Connectivity ------------------------------------------ 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=9,16=1,25=1,30=1,71=2,140=1/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=4,8=1,10=90,19=100/1; 9/15=4,16=-3/6; 10/6=1000,13=1100,21=1,45=16/2; 8/6=4,8=1,10=90,19=100/11,4; 10/5=1,20=4/2; 11/12=2,14=100,16=1,28=-2/12; 6/7=2,8=2,9=2,10=2/1; 99/9=1/99; -------------------------- 1. C5H10 2-methyl-1-butene -------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 H 4 B4 3 A3 2 D2 0 H 4 B5 3 A4 2 D3 0 H 4 B6 3 A5 2 D4 0 H 3 B7 4 A6 5 D5 0 H 3 B8 4 A7 5 D6 0 C 2 B9 1 A8 3 D7 0 H 10 B10 2 A9 1 D8 0 H 10 B11 2 A10 1 D9 0 H 1 B12 2 A11 3 D10 0 H 1 B13 2 A12 3 D11 0 H 1 B14 2 A13 3 D12 0 Variables: B1 1.50435 B2 1.50704 B3 1.52349 B4 1.09174 B5 1.09206 B6 1.09206 B7 1.09732 B8 1.09732 B9 1.3391 B10 1.0832 B11 1.08481 B12 1.09124 B13 1.09454 B14 1.09454 A1 114.9068 A2 116.04668 A3 110.49953 A4 111.15578 A5 111.15578 A6 109.61361 A7 109.61361 A8 121.54337 A9 122.14258 A10 120.68887 A11 111.67399 A12 110.60392 A13 110.60392 D1 180. D2 180. D3 -60.22256 D4 60.22256 D5 57.48399 D6 -57.48399 D7 180. D8 180. D9 0. D10 180. D11 -59.1381 D12 59.1381 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.504354 3 6 0 1.366874 0.000000 2.139033 4 6 0 1.397182 0.000000 3.662226 5 1 0 2.427192 0.000000 4.024135 6 1 0 0.899325 0.883979 4.066338 7 1 0 0.899325 -0.883979 4.066338 8 1 0 1.915063 -0.871621 1.759707 9 1 0 1.915063 0.871621 1.759707 10 6 0 -1.141243 0.000000 2.204897 11 1 0 -1.152571 0.000000 3.288038 12 1 0 -2.101131 0.000000 1.699495 13 1 0 -1.014090 0.000000 -0.403022 14 1 0 0.525553 0.879461 -0.385175 15 1 0 0.525553 -0.879461 -0.385175 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.504354 0.000000 3 C 2.538465 1.507038 0.000000 4 C 3.919696 2.570706 1.523495 0.000000 5 H 4.699460 3.498651 2.162841 1.091741 0.000000 6 H 4.257383 2.855516 2.171297 1.092056 1.765666 7 H 4.257383 2.855516 2.171297 1.092056 1.765666 8 H 2.742947 2.119527 1.097325 2.155806 2.479845 9 H 2.742947 2.119527 1.097325 2.155806 2.479845 10 C 2.482742 1.339103 2.508982 2.927014 4.005416 11 H 3.484195 2.123664 2.769083 2.577064 3.654661 12 H 2.702413 2.110174 3.495748 4.011297 5.090153 13 H 1.091240 2.160199 3.482963 4.726571 5.607329 14 H 1.094540 2.149413 2.802302 4.232569 4.881771 15 H 1.094540 2.149413 2.802302 4.232569 4.881771 6 7 8 9 10 6 H 0.000000 7 H 1.767958 0.000000 8 H 3.071547 2.520401 0.000000 9 H 2.520401 3.071547 1.743242 0.000000 10 C 2.900052 2.900052 3.209194 3.209194 0.000000 11 H 2.365893 2.365893 3.536368 3.536368 1.083200 12 H 3.922512 3.922512 4.110130 4.110130 1.084812 13 H 4.941433 4.941433 3.743936 3.743936 2.611017 14 H 4.467180 4.802645 3.097991 2.555645 3.203144 15 H 4.802645 4.467180 2.555645 3.097991 3.203144 11 12 13 14 15 11 H 0.000000 12 H 1.850198 0.000000 13 H 3.693657 2.366905 0.000000 14 H 4.133043 3.466810 1.773208 0.000000 15 H 4.133043 3.466810 1.773208 1.758922 0.000000 Stoichiometry C5H10 Framework group CS[SG(C5H4),X(H6)] Deg. of freedom 24 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.000081 1.671944 0.000000 2 6 0 0.000000 0.548148 0.000000 3 6 0 0.599166 -0.834662 0.000000 4 6 0 -0.390799 -1.992680 0.000000 5 1 0 0.138055 -2.947778 0.000000 6 1 0 -1.031363 -1.963593 0.883979 7 1 0 -1.031363 -1.963593 -0.883979 8 1 0 1.260851 -0.915726 -0.871621 9 1 0 1.260851 -0.915726 0.871621 10 6 0 -1.318257 0.783510 0.000000 11 1 0 -2.046782 -0.018097 0.000000 12 1 0 -1.699335 1.799185 0.000000 13 1 0 0.510452 2.647171 0.000000 14 1 0 1.648745 1.610298 0.879461 15 1 0 1.648745 1.610298 -0.879461 --------------------------------------------------------------------- Rotational constants (GHZ): 8.6106214 3.5552004 2.6388656 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 143 symmetry adapted cartesian basis functions of A' symmetry. There are 62 symmetry adapted cartesian basis functions of A" symmetry. There are 133 symmetry adapted basis functions of A' symmetry. There are 62 symmetry adapted basis functions of A" symmetry. 195 basis functions, 290 primitive gaussians, 205 cartesian basis functions 20 alpha electrons 20 beta electrons nuclear repulsion energy 175.7589599295 Hartrees. NAtoms= 15 NActive= 15 NUniq= 12 SFac= 1.56D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 195 RedAO= T EigKep= 2.21D-05 NBF= 133 62 NBsUse= 195 1.00D-06 EigRej= -1.00D+00 NBFU= 133 62 ExpMin= 4.38D-02 ExpMax= 4.56D+03 ExpMxC= 6.82D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") Virtual (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A") (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RHF) = -195.201186020 A.U. after 13 cycles NFock= 13 Conv=0.65D-08 -V/T= 2.0010 Range of M.O.s used for correlation: 1 195 NBasis= 195 NAE= 20 NBE= 20 NFC= 0 NFV= 0 NROrb= 195 NOA= 20 NOB= 20 NVA= 175 NVB= 175 **** Warning!!: The largest alpha MO coefficient is 0.81747678D+02 Disk-based method using ON**2 memory for 20 occupieds at a time. Permanent disk used for amplitudes= 15142750 words. Estimated scratch disk usage= 279445165 words. Actual scratch disk usage= 257027245 words. GetIJB would need an additional 9465673 words of memory to use all 4 processors. JobTyp=1 Pass 1: I= 1 to 20 NPSUse= 3 ParTrn=F ParDer=T DoDerP=T. Actual scratch disk usage= 257027245 words. GetIJB would need an additional 9465673 words of memory to use all 4 processors. JobTyp=1 Pass 1: I= 1 to 20 NPSUse= 3 ParTrn=F ParDer=T DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3245892237D-01 E2= -0.9614085630D-01 alpha-beta T2 = 0.2031892783D+00 E2= -0.6880618171D+00 beta-beta T2 = 0.3245892237D-01 E2= -0.9614085630D-01 ANorm= 0.1126102625D+01 E2 = -0.8803435297D+00 EUMP2 = -0.19608152954994D+03 IDoAtm=111111111111111 Differentiating once with respect to magnetic field using GIAOs. Differentiating once with respect to nuclear magnetic moments. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 15 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 48 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 48. 48 vectors produced by pass 0 Test12= 7.29D-15 2.08D-09 XBig12= 4.80D+00 7.92D-01. AX will form 48 AO Fock derivatives at one time. IMat= 19 ErrA= 6.39D-02 1.67D-01 48 vectors produced by pass 1 Test12= 7.29D-15 2.08D-09 XBig12= 6.83D-02 6.90D-02. IMat= 19 ErrA= 1.49D-02 5.56D-02 48 vectors produced by pass 2 Test12= 7.29D-15 2.08D-09 XBig12= 6.54D-04 8.16D-03. IMat= 19 ErrA= 1.19D-03 4.16D-03 48 vectors produced by pass 3 Test12= 7.29D-15 2.08D-09 XBig12= 4.68D-06 5.42D-04. IMat= 19 ErrA= 3.15D-04 7.16D-04 48 vectors produced by pass 4 Test12= 7.29D-15 2.08D-09 XBig12= 3.72D-08 4.22D-05. IMat= 19 ErrA= 1.84D-05 4.76D-05 48 vectors produced by pass 5 Test12= 7.29D-15 2.08D-09 XBig12= 3.51D-10 2.44D-06. IMat= 19 ErrA= 1.28D-06 6.96D-06 45 vectors produced by pass 6 Test12= 7.29D-15 2.08D-09 XBig12= 3.30D-12 2.44D-07. IMat= 19 ErrA= 1.11D-07 7.33D-07 17 vectors produced by pass 7 Test12= 7.29D-15 2.08D-09 XBig12= 2.29D-14 1.83D-08. IMat= 1 ErrA= 2.42D-07 1.88D-09 1 vectors produced by pass 8 Test12= 7.29D-15 2.08D-09 XBig12= 1.78D-16 2.14D-09. IMat= 1 ErrA= 6.41D-09 7.78D-08 InvSVY: IOpt=1 It= 1 EMax= 1.78D-15 Solved reduced A of dimension 351 with 48 vectors. IMat= 3 ErrA= 5.84D-07 5.05D+00 Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 168.8917 Anisotropy = 37.2967 XX= 169.7376 YX= 17.9369 ZX= 0.0000 XY= 12.4900 YY= 184.1199 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 152.8177 Eigenvalues: 152.8177 160.1013 193.7562 2 C Isotropic = 34.6924 Anisotropy = 203.4123 XX= 30.5142 YX= -31.9952 ZX= 0.0000 XY= -28.4063 YY= -96.7377 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 170.3006 Eigenvalues: -103.5414 37.3180 170.3006 3 C Isotropic = 165.0185 Anisotropy = 24.5169 XX= 154.2209 YX= -6.4364 ZX= 0.0000 XY= 2.5541 YY= 181.2243 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 159.6103 Eigenvalues: 154.0821 159.6103 181.3631 4 C Isotropic = 181.0255 Anisotropy = 11.5573 XX= 181.0541 YX= 5.3250 ZX= 0.0000 XY= 4.4456 YY= 185.6212 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 176.4011 Eigenvalues: 176.4011 177.9450 188.7303 5 H Isotropic = 31.1144 Anisotropy = 10.5049 XX= 29.2843 YX= -2.0373 ZX= 0.0000 XY= -2.4928 YY= 37.5369 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.5219 Eigenvalues: 26.5219 28.7035 38.1177 6 H Isotropic = 31.0486 Anisotropy = 8.7070 XX= 31.1158 YX= 0.8720 ZX= -4.4386 XY= 1.7461 YY= 29.8225 ZY= -1.4794 XZ= -4.5861 YZ= -1.8965 ZZ= 32.2074 Eigenvalues: 27.1075 29.1850 36.8532 7 H Isotropic = 31.0486 Anisotropy = 8.7070 XX= 31.1158 YX= 0.8720 ZX= 4.4386 XY= 1.7461 YY= 29.8225 ZY= 1.4794 XZ= 4.5861 YZ= 1.8965 ZZ= 32.2074 Eigenvalues: 27.1075 29.1850 36.8532 8 H Isotropic = 30.4040 Anisotropy = 7.7027 XX= 31.0878 YX= 0.9397 ZX= -4.3311 XY= 0.4309 YY= 29.9544 ZY= 0.6640 XZ= -5.4354 YZ= 1.3579 ZZ= 30.1698 Eigenvalues: 25.4027 30.2701 35.5391 9 H Isotropic = 30.4040 Anisotropy = 7.7027 XX= 31.0878 YX= 0.9397 ZX= 4.3311 XY= 0.4309 YY= 29.9544 ZY= -0.6640 XZ= 5.4354 YZ= -1.3579 ZZ= 30.1698 Eigenvalues: 25.4027 30.2701 35.5391 10 C Isotropic = 81.3915 Anisotropy = 126.4726 XX= 107.9270 YX= -19.6209 ZX= 0.0000 XY= -28.0566 YY= -29.4591 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 165.7066 Eigenvalues: -33.4779 111.9459 165.7066 11 H Isotropic = 27.3154 Anisotropy = 7.1270 XX= 31.3270 YX= -0.1690 ZX= 0.0000 XY= -4.0614 YY= 26.0193 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 24.6001 Eigenvalues: 24.6001 25.2794 32.0668 12 H Isotropic = 27.1774 Anisotropy = 5.9691 XX= 30.6783 YX= -3.2536 ZX= 0.0000 XY= -0.0111 YY= 25.5868 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.2670 Eigenvalues: 25.1084 25.2670 31.1567 13 H Isotropic = 30.2139 Anisotropy = 7.4623 XX= 29.5476 YX= 0.4256 ZX= 0.0000 XY= -2.2757 YY= 35.0371 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.0570 Eigenvalues: 26.0570 29.3959 35.1888 14 H Isotropic = 30.5146 Anisotropy = 7.9853 XX= 31.0891 YX= 0.9451 ZX= 4.0320 XY= 1.8822 YY= 29.2788 ZY= 1.0559 XZ= 4.4607 YZ= 1.0256 ZZ= 31.1760 Eigenvalues: 26.8502 28.8556 35.8382 15 H Isotropic = 30.5146 Anisotropy = 7.9853 XX= 31.0891 YX= 0.9451 ZX= -4.0320 XY= 1.8822 YY= 29.2788 ZY= -1.0559 XZ= -4.4607 YZ= -1.0256 ZZ= 31.1760 Eigenvalues: 26.8502 28.8556 35.8382 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. MDV= 33554432. Form MO integral derivatives with frozen-active canonical formalism. Discarding MO integrals. Reordered first order wavefunction length = 24500000 In DefCFB: NBatch= 1 ICI= 20 ICA=175 LFMax= 9 Large arrays: LIAPS= 559650000 LIARS= 588350000 words. Semi-Direct transformation. ModeAB= 4 MOrb= 20 LenV= 32529996 LASXX= 69113395 LTotXX= 69113395 LenRXX= 139276495 LTotAB= 70163100 MaxLAS= 69119700 LenRXY= 0 NonZer= 208389890 LenScr= 316477440 LnRSAI= 69119700 LnScr1= 106030080 LExtra= 0 Total= 630903715 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 20. Spin components of T(2) and E(2): alpha-alpha T2 = 0.3245892237D-01 E2= -0.9614085630D-01 alpha-beta T2 = 0.2031892783D+00 E2= -0.6880618171D+00 beta-beta T2 = 0.3245892237D-01 E2= -0.9614085630D-01 ANorm= 0.1592549606D+01 E2 = -0.8803435297D+00 EUMP2 = -0.19608152954994D+03 IDoAtm=111111111111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 1. LinEq1: Iter= 0 NonCon= 1 RMS=3.14D-03 Max=5.40D-02 NDo= 1 LinEq1: Iter= 1 NonCon= 1 RMS=8.54D-04 Max=8.58D-03 NDo= 1 LinEq1: Iter= 2 NonCon= 1 RMS=2.63D-04 Max=4.82D-03 NDo= 1 LinEq1: Iter= 3 NonCon= 1 RMS=7.44D-05 Max=1.24D-03 NDo= 1 LinEq1: Iter= 4 NonCon= 1 RMS=3.33D-05 Max=7.61D-04 NDo= 1 LinEq1: Iter= 5 NonCon= 1 RMS=7.79D-06 Max=7.69D-05 NDo= 1 LinEq1: Iter= 6 NonCon= 1 RMS=2.35D-06 Max=4.77D-05 NDo= 1 LinEq1: Iter= 7 NonCon= 1 RMS=6.01D-07 Max=5.47D-06 NDo= 1 LinEq1: Iter= 8 NonCon= 1 RMS=1.26D-07 Max=1.68D-06 NDo= 1 LinEq1: Iter= 9 NonCon= 1 RMS=2.69D-08 Max=4.30D-07 NDo= 1 LinEq1: Iter= 10 NonCon= 1 RMS=7.07D-09 Max=9.18D-08 NDo= 1 LinEq1: Iter= 11 NonCon= 1 RMS=2.07D-09 Max=2.93D-08 NDo= 1 LinEq1: Iter= 12 NonCon= 1 RMS=3.01D-10 Max=3.03D-09 NDo= 1 LinEq1: Iter= 13 NonCon= 1 RMS=8.83D-11 Max=1.18D-09 NDo= 1 LinEq1: Iter= 14 NonCon= 0 RMS=1.92D-11 Max=1.75D-10 NDo= 1 Linear equations converged to 1.000D-10 1.000D-09 after 14 iterations. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. Would need an additional 416681030 words for in-memory AO integral storage. DD1Dir will call FoFJK 3 times, MxPair= 140 NAB= 210 NAA= 0 NBB= 0 NumPrc= 4. FoFJK: IHMeth= 1 ICntrl= 200 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 990000000 NMat= 140 IRICut= 175 DoRegI=T DoRafI=T ISym2E=-1. FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T wScrn= 0.000000 ICntrl= 200 IOpCl= 0 I1Cent= 0 NGrid= 0 NMat0= 140 NMatS0= 0 NMatT0= 70 NMatD0= 140 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Calculating GIAO nuclear magnetic shielding tensors. MP2 GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 170.4548 Anisotropy = 44.1492 XX= 172.4587 YX= 20.9360 ZX= 0.0000 XY= 15.0678 YY= 188.0728 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 150.8330 Eigenvalues: 150.8330 160.6438 199.8876 2 C Isotropic = 47.0812 Anisotropy = 180.7198 XX= 34.5408 YX= -26.8292 ZX= 0.0000 XY= -23.2906 YY= -60.8582 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 167.5611 Eigenvalues: -67.0404 40.7230 167.5611 3 C Isotropic = 165.5102 Anisotropy = 29.5153 XX= 153.9341 YX= -7.4377 ZX= 0.0000 XY= 2.2730 YY= 184.9737 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 157.6228 Eigenvalues: 153.7208 157.6228 185.1871 4 C Isotropic = 185.1892 Anisotropy = 14.0488 XX= 185.0303 YX= 6.7673 ZX= 0.0000 XY= 6.2140 YY= 190.1321 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 180.4054 Eigenvalues: 180.4054 180.6072 194.5551 5 H Isotropic = 30.7251 Anisotropy = 10.6664 XX= 28.8645 YX= -1.9045 ZX= 0.0000 XY= -2.5449 YY= 37.2844 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.0265 Eigenvalues: 26.0265 28.3128 37.8361 6 H Isotropic = 30.7808 Anisotropy = 8.9689 XX= 30.8374 YX= 0.9001 ZX= -4.5351 XY= 1.9089 YY= 29.4587 ZY= -1.5964 XZ= -4.6274 YZ= -1.9415 ZZ= 32.0465 Eigenvalues: 26.8151 28.7673 36.7601 7 H Isotropic = 30.7808 Anisotropy = 8.9689 XX= 30.8374 YX= 0.9001 ZX= 4.5351 XY= 1.9089 YY= 29.4587 ZY= 1.5964 XZ= 4.6274 YZ= 1.9415 ZZ= 32.0465 Eigenvalues: 26.8151 28.7673 36.7601 8 H Isotropic = 29.8923 Anisotropy = 7.5305 XX= 30.4999 YX= 1.0381 ZX= -4.3208 XY= 0.3923 YY= 29.5622 ZY= 0.7266 XZ= -5.3378 YZ= 1.3528 ZZ= 29.6149 Eigenvalues: 24.8743 29.8900 34.9127 9 H Isotropic = 29.8923 Anisotropy = 7.5305 XX= 30.4999 YX= 1.0381 ZX= 4.3208 XY= 0.3923 YY= 29.5622 ZY= -0.7266 XZ= 5.3378 YZ= -1.3528 ZZ= 29.6149 Eigenvalues: 24.8743 29.8900 34.9127 10 C Isotropic = 89.6276 Anisotropy = 115.2825 XX= 105.7017 YX= -13.6109 ZX= 0.0000 XY= -22.7341 YY= -3.3014 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 166.4826 Eigenvalues: -6.2512 108.6515 166.4826 11 H Isotropic = 27.0779 Anisotropy = 6.2038 XX= 30.6820 YX= -0.0048 ZX= 0.0000 XY= -3.2689 YY= 26.1760 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 24.3758 Eigenvalues: 24.3758 25.6442 31.2138 12 H Isotropic = 26.9187 Anisotropy = 5.2407 XX= 29.7628 YX= -2.9802 ZX= 0.0000 XY= -0.4332 YY= 25.9295 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.0639 Eigenvalues: 25.0639 25.2798 30.4125 13 H Isotropic = 29.9359 Anisotropy = 7.6703 XX= 29.0499 YX= 0.5863 ZX= 0.0000 XY= -2.3797 YY= 34.9154 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.8425 Eigenvalues: 25.8425 28.9158 35.0495 14 H Isotropic = 30.1068 Anisotropy = 7.9663 XX= 30.6866 YX= 0.9222 ZX= 4.0488 XY= 2.0994 YY= 28.9382 ZY= 1.1962 XZ= 4.3417 YZ= 1.0268 ZZ= 30.6956 Eigenvalues: 26.4571 28.4456 35.4176 15 H Isotropic = 30.1068 Anisotropy = 7.9663 XX= 30.6866 YX= 0.9222 ZX= -4.0488 XY= 2.0994 YY= 28.9382 ZY= -1.1961 XZ= -4.3417 YZ= -1.0268 ZZ= 30.6956 Eigenvalues: 26.4571 28.4456 35.4176 Discarding MO integrals. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") Virtual (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A") (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -11.23644 -11.22511 -11.21841 -11.21254 -11.20752 Alpha occ. eigenvalues -- -1.09887 -0.99948 -0.92841 -0.86006 -0.70911 Alpha occ. eigenvalues -- -0.63463 -0.61821 -0.59357 -0.56116 -0.54810 Alpha occ. eigenvalues -- -0.51716 -0.49131 -0.48975 -0.46729 -0.34464 Alpha virt. eigenvalues -- 0.07189 0.08072 0.08649 0.09186 0.10115 Alpha virt. eigenvalues -- 0.10593 0.12364 0.13094 0.13428 0.13867 Alpha virt. eigenvalues -- 0.15520 0.15909 0.17466 0.19125 0.19885 Alpha virt. eigenvalues -- 0.20523 0.22549 0.23309 0.25412 0.27665 Alpha virt. eigenvalues -- 0.27933 0.28700 0.30453 0.31739 0.32002 Alpha virt. eigenvalues -- 0.33780 0.34108 0.35400 0.35577 0.37856 Alpha virt. eigenvalues -- 0.40416 0.41480 0.43657 0.47447 0.50867 Alpha virt. eigenvalues -- 0.52239 0.56806 0.56987 0.60038 0.63206 Alpha virt. eigenvalues -- 0.63782 0.66390 0.68492 0.71760 0.73448 Alpha virt. eigenvalues -- 0.75612 0.76307 0.78788 0.79988 0.80043 Alpha virt. eigenvalues -- 0.81717 0.81821 0.84192 0.84688 0.87006 Alpha virt. eigenvalues -- 0.87182 0.88053 0.90733 0.91014 0.92550 Alpha virt. eigenvalues -- 0.93570 0.96312 0.96527 1.00027 1.02772 Alpha virt. eigenvalues -- 1.04284 1.10390 1.11920 1.13086 1.14144 Alpha virt. eigenvalues -- 1.21590 1.24027 1.26416 1.31170 1.32151 Alpha virt. eigenvalues -- 1.33109 1.40862 1.41688 1.43029 1.45657 Alpha virt. eigenvalues -- 1.49939 1.49946 1.55089 1.58454 1.58658 Alpha virt. eigenvalues -- 1.61339 1.67624 1.73520 1.73897 1.76413 Alpha virt. eigenvalues -- 1.87990 1.94651 1.95915 1.98519 2.01613 Alpha virt. eigenvalues -- 2.04156 2.06033 2.12962 2.16143 2.16609 Alpha virt. eigenvalues -- 2.24082 2.28907 2.34063 2.43662 2.48116 Alpha virt. eigenvalues -- 2.49576 2.51037 2.51121 2.58674 2.60941 Alpha virt. eigenvalues -- 2.65437 2.66218 2.66957 2.68451 2.69911 Alpha virt. eigenvalues -- 2.71321 2.73349 2.78305 2.79602 2.84063 Alpha virt. eigenvalues -- 2.96558 2.98076 3.03624 3.04827 3.10272 Alpha virt. eigenvalues -- 3.14032 3.15630 3.19359 3.22923 3.24498 Alpha virt. eigenvalues -- 3.29059 3.35897 3.40761 3.52370 3.53622 Alpha virt. eigenvalues -- 3.56937 3.57685 3.62520 3.64246 3.64632 Alpha virt. eigenvalues -- 3.69434 3.70629 3.76592 3.78185 3.81796 Alpha virt. eigenvalues -- 3.84408 3.87559 3.90254 3.93081 3.94272 Alpha virt. eigenvalues -- 3.96633 3.97141 4.02663 4.03460 4.05245 Alpha virt. eigenvalues -- 4.14218 4.16491 4.23657 4.33505 4.37315 Alpha virt. eigenvalues -- 4.50179 4.59858 4.62047 4.64025 4.65593 Alpha virt. eigenvalues -- 4.66027 4.73564 4.90900 5.08761 5.35095 Alpha virt. eigenvalues -- 24.92381 25.11586 25.15310 25.31043 25.35215 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.543398 -0.030533 -0.028972 -0.134480 0.004421 0.001127 2 C -0.030533 4.926990 -0.200812 0.270299 0.024353 -0.008798 3 C -0.028972 -0.200812 6.016646 -0.334667 -0.044434 -0.039520 4 C -0.134480 0.270299 -0.334667 5.512357 0.404477 0.443775 5 H 0.004421 0.024353 -0.044434 0.404477 0.553216 -0.025373 6 H 0.001127 -0.008798 -0.039520 0.443775 -0.025373 0.552749 7 H 0.001127 -0.008798 -0.039520 0.443775 -0.025373 -0.036447 8 H -0.007430 -0.071517 0.466047 -0.039896 -0.004276 0.006609 9 H -0.007430 -0.071517 0.466047 -0.039896 -0.004276 -0.006267 10 C -0.073771 0.504820 0.043288 -0.065232 -0.000718 -0.008596 11 H 0.007394 -0.027600 0.002940 -0.002293 0.000401 -0.001942 12 H -0.009545 -0.012805 0.000254 0.003237 0.000008 0.000004 13 H 0.420690 -0.073338 0.013857 0.000353 0.000009 -0.000009 14 H 0.418115 -0.020022 -0.023854 0.001214 -0.000015 0.000054 15 H 0.418115 -0.020022 -0.023854 0.001214 -0.000015 -0.000002 7 8 9 10 11 12 1 C 0.001127 -0.007430 -0.007430 -0.073771 0.007394 -0.009545 2 C -0.008798 -0.071517 -0.071517 0.504820 -0.027600 -0.012805 3 C -0.039520 0.466047 0.466047 0.043288 0.002940 0.000254 4 C 0.443775 -0.039896 -0.039896 -0.065232 -0.002293 0.003237 5 H -0.025373 -0.004276 -0.004276 -0.000718 0.000401 0.000008 6 H -0.036447 0.006609 -0.006267 -0.008596 -0.001942 0.000004 7 H 0.552749 -0.006267 0.006609 -0.008596 -0.001942 0.000004 8 H -0.006267 0.592680 -0.048509 -0.001868 0.000016 -0.000167 9 H 0.006609 -0.048509 0.592680 -0.001868 0.000016 -0.000167 10 C -0.008596 -0.001868 -0.001868 5.496058 0.402186 0.401317 11 H -0.001942 0.000016 0.000016 0.402186 0.552054 -0.032172 12 H 0.000004 -0.000167 -0.000167 0.401317 -0.032172 0.553890 13 H -0.000009 -0.000162 -0.000162 0.020775 0.000145 0.002210 14 H -0.000002 -0.000547 0.003371 -0.003283 -0.000229 0.000284 15 H 0.000054 0.003371 -0.000547 -0.003283 -0.000229 0.000284 13 14 15 1 C 0.420690 0.418115 0.418115 2 C -0.073338 -0.020022 -0.020022 3 C 0.013857 -0.023854 -0.023854 4 C 0.000353 0.001214 0.001214 5 H 0.000009 -0.000015 -0.000015 6 H -0.000009 0.000054 -0.000002 7 H -0.000009 -0.000002 0.000054 8 H -0.000162 -0.000547 0.003371 9 H -0.000162 0.003371 -0.000547 10 C 0.020775 -0.003283 -0.003283 11 H 0.000145 -0.000229 -0.000229 12 H 0.002210 0.000284 0.000284 13 H 0.551076 -0.024816 -0.024816 14 H -0.024816 0.568696 -0.042127 15 H -0.024816 -0.042127 0.568696 Mulliken charges: 1 1 C -0.522229 2 C 0.819300 3 C -0.273445 4 C -0.464236 5 H 0.117596 6 H 0.122637 7 H 0.122637 8 H 0.111915 9 H 0.111915 10 C -0.701228 11 H 0.101254 12 H 0.093366 13 H 0.114198 14 H 0.123160 15 H 0.123160 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.161711 2 C 0.819300 3 C -0.049614 4 C -0.101367 10 C -0.506608 Electronic spatial extent (au): = 525.3730 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.5981 Y= -0.1745 Z= 0.0000 Tot= 0.6231 Quadrupole moment (field-independent basis, Debye-Ang): XX= -33.1916 YY= -33.0064 ZZ= -35.2446 XY= 0.0946 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6226 YY= 0.8078 ZZ= -1.4304 XY= 0.0946 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.7701 YYY= 2.6948 ZZZ= 0.0000 XYY= -0.2116 XXY= -0.3606 XXZ= 0.0000 XZZ= 3.3397 YZZ= -2.0326 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -222.9837 YYYY= -448.4074 ZZZZ= -61.1632 XXXY= -25.7964 XXXZ= 0.0000 YYYX= -36.0250 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -112.8520 XXZZ= -46.9349 YYZZ= -88.5977 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -5.4562 N-N= 1.757589599295D+02 E-N=-8.050063560563D+02 KE= 1.950096243410D+02 Symmetry A' KE= 1.872728773539D+02 Symmetry A" KE= 7.736746987165D+00 1\1\GINC-COMPUTE-0-10\SP\RMP2-Full\6-311+G(2d,p)\C5H10\ZDANOVSKAIA\25- Aug-2016\0\\#N MP2/6-311+G(2d,p) NMR Geom=Connectivity\\1. C5H10 2-met hyl-1-butene\\0,1\C\C,1,1.504353501\C,2,1.507037953,1,114.9067992\C,3, 1.523494795,2,116.04668,1,180.,0\H,4,1.091741152,3,110.4995259,2,180., 0\H,4,1.092056392,3,111.1557775,2,-60.22255971,0\H,4,1.092056392,3,111 .1557775,2,60.22255971,0\H,3,1.097324737,4,109.6136085,5,57.48399262,0 \H,3,1.097324737,4,109.6136085,5,-57.48399262,0\C,2,1.339102979,1,121. 5433672,3,180.,0\H,10,1.083200101,2,122.14258,1,180.,0\H,10,1.08481157 2,2,120.6888729,1,0.,0\H,1,1.091239781,2,111.6739863,3,180.,0\H,1,1.09 4539567,2,110.6039238,3,-59.13809545,0\H,1,1.094539567,2,110.6039238,3 ,59.13809545,0\\Version=EM64L-G09RevD.01\State=1-A'\HF=-195.201186\MP2 =-196.0815295\RMSD=6.458e-09\PG=CS [SG(C5H4),X(H6)]\\@ LET US LEARN TO DREAM, GENTLEMEN, THEN PERHAPS WE SHALL DISCOVER THE TRUTH; BUT LET US BEWARE OF PUBLISHING OUR DREAMS ABROAD BEFORE THEY HAVE BEEN SCRUTINIZED BY OUR VIGILANT INTELLECT ... LET US ALWAYS ALLOW THE FRUIT TO HANG UNTIL IT IS RIPE. UNRIPE FRUIT BRINGS EVEN THE GROWER BUT LITTLE PROFIT; IT DAMAGES THE HEALTH OF THOSE WHO CONSUME IT; IT ENDANGERS PARTICULARLY THE YOUTH WHO CANNOT YET DISTINGUISH BETWEEN RIPE AND UNRIPE FRUIT. -- KEKULE, 1890 Job cpu time: 0 days 1 hours 17 minutes 0.6 seconds. File lengths (MBytes): RWF= 9199 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Thu Aug 25 13:13:58 2016.