Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/254213/Gau-10748.inp" -scrdir="/scratch/webmo-13362/254213/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 10749. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 12-Apr-2018 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. --------------------- #N B3LYP/gen OPT FREQ --------------------- 1/14=-1,18=20,19=15,26=3,38=1/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=7,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=7,6=1,11=2,16=1,25=1,30=1,71=1,74=-5,82=7/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; --------------- F4Xe B3LYP/ATZP --------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Xe F 1 B1 F 1 B2 2 A1 Variables: B1 2.03 B2 2.03 A1 180. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.03 estimate D2E/DX2 ! ! R2 R(1,3) 2.03 estimate D2E/DX2 ! ! A1 L(2,1,3,-1,-1) 180.0 estimate D2E/DX2 ! ! A2 L(2,1,3,-2,-2) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 2.030000 3 9 0 0.000000 0.000000 -2.030000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Xe 0.000000 2 F 2.030000 0.000000 3 F 2.030000 4.060000 0.000000 Stoichiometry F2Xe Framework group D*H[O(Xe),C*(F.F)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 2.030000 3 9 0 0.000000 0.000000 -2.030000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3.2275875 3.2275875 General basis read from cards: (5D, 7F) There are 62 symmetry adapted cartesian basis functions of AG symmetry. There are 16 symmetry adapted cartesian basis functions of B1G symmetry. There are 24 symmetry adapted cartesian basis functions of B2G symmetry. There are 24 symmetry adapted cartesian basis functions of B3G symmetry. There are 8 symmetry adapted cartesian basis functions of AU symmetry. There are 42 symmetry adapted cartesian basis functions of B1U symmetry. There are 30 symmetry adapted cartesian basis functions of B2U symmetry. There are 30 symmetry adapted cartesian basis functions of B3U symmetry. There are 46 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of B1G symmetry. There are 20 symmetry adapted basis functions of B2G symmetry. There are 20 symmetry adapted basis functions of B3G symmetry. There are 8 symmetry adapted basis functions of AU symmetry. There are 34 symmetry adapted basis functions of B1U symmetry. There are 25 symmetry adapted basis functions of B2U symmetry. There are 25 symmetry adapted basis functions of B3U symmetry. 192 basis functions, 332 primitive gaussians, 236 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 263.9369082253 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. NBasis= 192 RedAO= T EigKep= 1.45D-03 NBF= 46 14 20 20 8 34 25 25 NBsUse= 192 1.00D-06 EigRej= -1.00D+00 NBFU= 46 14 20 20 8 34 25 25 Defaulting to unpruned grid for atomic number 54. ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Initial guess orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGU) (SGG) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGU) (SGG) (PIU) (PIU) (SGU) (DLTG) (DLTG) (SGG) (PIG) (PIG) (SGU) (PIU) (PIU) (SGU) (SGG) (PIU) (PIU) (PIG) (PIG) (SGG) (SGG) (SGU) (SGU) (PIU) (PIU) (PIU) (PIU) (DLTU) (DLTU) (PIG) (PIG) (DLTG) (DLTG) (SGG) (PIG) (PIG) (PHIU) (PHIU) (DLTG) (DLTG) (PIU) (PIU) (SGU) (DLTU) (DLTU) (SGU) (SGG) (SGG) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (SGU) (SGG) (DLTU) (DLTU) (PHIU) (PHIU) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (DLTU) (DLTU) (DLTG) (DLTG) (PIU) (PIU) (PHIG) (PHIG) (PHIU) (PHIU) (?A) (?A) (PIG) (PIG) (PHIG) (PHIG) (DLTU) (DLTU) (SGU) (SGG) (DLTG) (DLTG) (PIG) (PIG) (DLTG) (DLTG) (PIU) (PIU) (PIG) (PIG) (PIU) (PIU) (SGG) (SGU) (SGG) (SGU) (PIG) (PIG) (SGG) (SGU) (SGG) (PHIU) (PHIU) (DLTU) (DLTU) (PIU) (PIU) (SGU) (PHIG) (PHIG) (PHIU) (PHIU) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGU) (?A) (?A) (PHIG) (PHIG) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (SGU) (SGG) (SGG) (SGG) The electronic state of the initial guess is 1-SGG. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7427.79504574 A.U. after 10 cycles NFock= 10 Conv=0.59D-08 -V/T= 2.0066 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGU) (SGG) (PIU) (PIU) (SGU) (DLTG) (DLTG) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGG) (SGU) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PHIU) (PHIU) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIG) (PIG) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (SGG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (DLTG) (DLTG) (?A) (?A) (PIU) (PIU) (PHIU) (PHIU) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (PIG) (PIG) (PIG) (PIG) (SGU) (SGG) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PHIU) (PHIU) (SGG) (DLTU) (DLTU) (PIU) (PIU) (SGU) (DLTG) (DLTG) (PHIG) (PHIG) (PHIU) (PHIU) (DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (SGG) (SGU) (DLTU) (DLTU) (DLTG) (DLTG) (PIU) (PIU) (SGG) (PIG) (PIG) (PHIG) (PHIG) (?A) (?A) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (SGU) (SGG) (SGG) (SGG) The electronic state is 1-SGG. Alpha occ. eigenvalues -- **********-187.11151-176.27768-176.27656-176.27656 Alpha occ. eigenvalues -- -39.81919 -35.20197 -35.19818 -35.19818 -26.69732 Alpha occ. eigenvalues -- -26.69638 -26.69638 -26.69377 -26.69376 -24.67799 Alpha occ. eigenvalues -- -24.67799 -7.74253 -6.03347 -6.02081 -6.02081 Alpha occ. eigenvalues -- -2.37517 -2.36352 -2.36352 -2.34938 -2.34845 Alpha occ. eigenvalues -- -1.16792 -1.16102 -0.88194 -0.55294 -0.47119 Alpha occ. eigenvalues -- -0.47119 -0.42085 -0.42085 -0.40295 -0.36686 Alpha occ. eigenvalues -- -0.36686 Alpha virt. eigenvalues -- -0.15983 -0.01527 0.01205 0.01205 0.01820 Alpha virt. eigenvalues -- 0.07045 0.07059 0.07917 0.10525 0.10525 Alpha virt. eigenvalues -- 0.11002 0.11002 0.11247 0.14868 0.15505 Alpha virt. eigenvalues -- 0.17620 0.17620 0.19292 0.19292 0.27704 Alpha virt. eigenvalues -- 0.36166 0.38544 0.40566 0.40566 0.41503 Alpha virt. eigenvalues -- 0.47904 0.47904 0.49646 0.49728 0.54264 Alpha virt. eigenvalues -- 0.54264 0.56277 0.56277 0.58983 0.59115 Alpha virt. eigenvalues -- 0.63769 0.64562 0.74374 0.74410 0.75419 Alpha virt. eigenvalues -- 0.75428 0.75686 0.75686 0.79328 0.79328 Alpha virt. eigenvalues -- 0.84126 0.84450 0.92689 0.92689 0.96279 Alpha virt. eigenvalues -- 1.11723 1.11723 1.26295 1.31330 1.57403 Alpha virt. eigenvalues -- 1.75283 1.75283 1.76505 1.76891 1.80265 Alpha virt. eigenvalues -- 1.97451 1.97451 2.08343 2.30378 2.31245 Alpha virt. eigenvalues -- 2.31245 2.39656 2.39665 2.58569 2.58569 Alpha virt. eigenvalues -- 2.59230 2.59230 2.62220 2.62226 2.62765 Alpha virt. eigenvalues -- 2.62982 2.65197 2.65197 2.69417 2.69417 Alpha virt. eigenvalues -- 2.71642 2.72086 2.72626 2.72626 2.78884 Alpha virt. eigenvalues -- 2.78914 2.79199 2.79199 2.83295 2.83295 Alpha virt. eigenvalues -- 2.84418 2.89763 3.01382 3.01415 3.23637 Alpha virt. eigenvalues -- 3.23637 3.36274 3.36663 3.38996 3.38996 Alpha virt. eigenvalues -- 3.39651 3.39651 3.43882 3.69448 3.69448 Alpha virt. eigenvalues -- 3.78687 4.36179 6.27189 6.32872 6.32872 Alpha virt. eigenvalues -- 6.34349 6.37211 6.37434 6.66468 6.66468 Alpha virt. eigenvalues -- 6.73851 8.55470 8.55493 8.56501 8.56501 Alpha virt. eigenvalues -- 8.56643 8.56643 8.58892 8.58893 8.66557 Alpha virt. eigenvalues -- 8.66557 8.79168 8.79168 8.86754 8.92564 Alpha virt. eigenvalues -- 8.92849 8.92850 8.94080 8.94084 8.98613 Alpha virt. eigenvalues -- 8.98613 9.01179 9.03176 9.03176 9.16547 Alpha virt. eigenvalues -- 9.16547 9.17131 9.17140 9.18348 9.21042 Alpha virt. eigenvalues -- 9.21514 9.44113 9.44113 9.69833 35.48851 Alpha virt. eigenvalues -- 35.48851 36.67905 78.22065 78.26673 177.54458 Alpha virt. eigenvalues -- 3113.85279 Condensed to atoms (all electrons): 1 2 3 1 Xe 55.742550 -0.988346 -0.988346 2 F -0.988346 10.040398 0.065019 3 F -0.988346 0.065019 10.040398 Mulliken charges: 1 1 Xe 0.234142 2 F -0.117071 3 F -0.117071 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe 0.234142 2 F -0.117071 3 F -0.117071 Electronic spatial extent (au): = 356.3277 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.2033 YY= -37.2033 ZZ= -48.5828 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.7932 YY= 3.7932 ZZ= -7.5863 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -45.6059 YYYY= -45.6059 ZZZZ= -344.8200 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -15.2037 XXZZ= -57.8822 YYZZ= -57.8822 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.639369082253D+02 E-N=-1.804241429411D+04 KE= 7.379303133272D+03 Symmetry AG KE= 4.181506572787D+03 Symmetry B1G KE= 1.887505098751D+02 Symmetry B2G KE= 1.949888700075D+02 Symmetry B3G KE= 1.949888700075D+02 Symmetry AU KE= 2.543024754215D-21 Symmetry B1U KE= 9.245516293392D+02 Symmetry B2U KE= 8.472583406281D+02 Symmetry B3U KE= 8.472583406281D+02 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 -0.025990440 3 9 0.000000000 0.000000000 0.025990440 ------------------------------------------------------------------- Cartesian Forces: Max 0.025990440 RMS 0.012252011 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025990440 RMS 0.018378016 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 A2 R1 0.16708 R2 0.00000 0.16708 A1 0.00000 0.00000 0.00230 A2 0.00000 0.00000 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00230 0.00230 0.16708 0.16708 RFO step: Lambda=-7.72829962D-03 EMin= 2.30000000D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.10512966 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.05D-12 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.83614 -0.02599 0.00000 -0.14868 -0.14868 3.68747 R2 3.83614 -0.02599 0.00000 -0.14868 -0.14868 3.68747 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.025990 0.000450 NO RMS Force 0.018378 0.000300 NO Maximum Displacement 0.148676 0.001800 NO RMS Displacement 0.105130 0.001200 NO Predicted change in Energy=-4.034979D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.951324 3 9 0 0.000000 0.000000 -1.951324 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Xe 0.000000 2 F 1.951324 0.000000 3 F 1.951324 3.902648 0.000000 Stoichiometry F2Xe Framework group D*H[O(Xe),C*(F.F)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.951324 3 9 0 0.000000 0.000000 -1.951324 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3.4931019 3.4931019 Basis read from rwf: (5D, 7F) There are 62 symmetry adapted cartesian basis functions of AG symmetry. There are 16 symmetry adapted cartesian basis functions of B1G symmetry. There are 24 symmetry adapted cartesian basis functions of B2G symmetry. There are 24 symmetry adapted cartesian basis functions of B3G symmetry. There are 8 symmetry adapted cartesian basis functions of AU symmetry. There are 42 symmetry adapted cartesian basis functions of B1U symmetry. There are 30 symmetry adapted cartesian basis functions of B2U symmetry. There are 30 symmetry adapted cartesian basis functions of B3U symmetry. There are 46 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of B1G symmetry. There are 20 symmetry adapted basis functions of B2G symmetry. There are 20 symmetry adapted basis functions of B3G symmetry. There are 8 symmetry adapted basis functions of AU symmetry. There are 34 symmetry adapted basis functions of B1U symmetry. There are 25 symmetry adapted basis functions of B2U symmetry. There are 25 symmetry adapted basis functions of B3U symmetry. 192 basis functions, 332 primitive gaussians, 236 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 274.5786345407 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. NBasis= 192 RedAO= T EigKep= 1.26D-03 NBF= 46 14 20 20 8 34 25 25 NBsUse= 192 1.00D-06 EigRej= -1.00D+00 NBFU= 46 14 20 20 8 34 25 25 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254213/Gau-10749.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (?A) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (DLTG) (?A) (DLTG) (SGG) (SGG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (DLTG) (DLTG) (?A) (DLTG) (DLTG) (DLTG) (DLTG) (?A) (DLTG) (DLTG) (DLTG) (DLTG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7427.79806596 A.U. after 10 cycles NFock= 10 Conv=0.12D-08 -V/T= 2.0065 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 0.007770792 3 9 0.000000000 0.000000000 -0.007770792 ------------------------------------------------------------------- Cartesian Forces: Max 0.007770792 RMS 0.003663187 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.007770792 RMS 0.005494780 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.02D-03 DEPred=-4.03D-03 R= 7.49D-01 TightC=F SS= 1.41D+00 RLast= 2.10D-01 DXNew= 5.0454D-01 6.3078D-01 Trust test= 7.49D-01 RLast= 2.10D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 A2 R1 0.19708 R2 0.03000 0.19708 A1 0.00000 0.00000 0.00230 A2 0.00000 0.00000 0.00000 0.00230 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00230 0.16708 0.22708 RFO step: Lambda= 0.00000000D+00 EMin= 2.30000000D-03 Quartic linear search produced a step of -0.19985. Iteration 1 RMS(Cart)= 0.02101026 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.71D-11 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.68747 0.00777 0.02971 0.00000 0.02971 3.71718 R2 3.68747 0.00777 0.02971 0.00000 0.02971 3.71718 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.007771 0.000450 NO RMS Force 0.005495 0.000300 NO Maximum Displacement 0.029713 0.001800 NO RMS Displacement 0.021010 0.001200 NO Predicted change in Energy=-2.613071D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Xe 0.000000 2 F 1.967048 0.000000 3 F 1.967048 3.934095 0.000000 Stoichiometry F2Xe Framework group D*H[O(Xe),C*(F.F)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3.4374814 3.4374814 Basis read from rwf: (5D, 7F) There are 62 symmetry adapted cartesian basis functions of AG symmetry. There are 16 symmetry adapted cartesian basis functions of B1G symmetry. There are 24 symmetry adapted cartesian basis functions of B2G symmetry. There are 24 symmetry adapted cartesian basis functions of B3G symmetry. There are 8 symmetry adapted cartesian basis functions of AU symmetry. There are 42 symmetry adapted cartesian basis functions of B1U symmetry. There are 30 symmetry adapted cartesian basis functions of B2U symmetry. There are 30 symmetry adapted cartesian basis functions of B3U symmetry. There are 46 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of B1G symmetry. There are 20 symmetry adapted basis functions of B2G symmetry. There are 20 symmetry adapted basis functions of B3G symmetry. There are 8 symmetry adapted basis functions of AU symmetry. There are 34 symmetry adapted basis functions of B1U symmetry. There are 25 symmetry adapted basis functions of B2U symmetry. There are 25 symmetry adapted basis functions of B3U symmetry. 192 basis functions, 332 primitive gaussians, 236 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 272.3838118740 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. NBasis= 192 RedAO= T EigKep= 1.29D-03 NBF= 46 14 20 20 8 34 25 25 NBsUse= 192 1.00D-06 EigRej= -1.00D+00 NBFU= 46 14 20 20 8 34 25 25 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254213/Gau-10749.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (?A) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (DLTG) (?A) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (SGG) (SGG) (SGG) (DLTG) (SGG) (SGG) (DLTG) (DLTG) (?A) (DLTG) (DLTG) (DLTG) (DLTG) (?A) (DLTG) (DLTG) (DLTG) (DLTG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PHIG) (PIG) (PIG) (PIG) (PIG) (PHIG) (PIG) (PIG) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (SGU) (SGU) (DLTU) (SGU) (DLTU) (SGU) (SGU) (DLTU) (SGU) (SGU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PIU) (PIU) (PHIU) (PIU) (PIU) (PHIU) (PIU) ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7427.79829360 A.U. after 8 cycles NFock= 8 Conv=0.46D-08 -V/T= 2.0065 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 -0.000014565 3 9 0.000000000 0.000000000 0.000014565 ------------------------------------------------------------------- Cartesian Forces: Max 0.000014565 RMS 0.000006866 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000014565 RMS 0.000010299 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -2.28D-04 DEPred=-2.61D-04 R= 8.71D-01 TightC=F SS= 1.41D+00 RLast= 4.20D-02 DXNew= 8.4853D-01 1.2606D-01 Trust test= 8.71D-01 RLast= 4.20D-02 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 A2 R1 0.21455 R2 0.04747 0.21455 A1 0.00000 0.00000 0.00230 A2 0.00000 0.00000 0.00000 0.00230 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.00230 0.16708 0.26202 RFO step: Lambda= 0.00000000D+00 EMin= 2.30000000D-03 Quartic linear search produced a step of -0.00194. Iteration 1 RMS(Cart)= 0.00004079 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.72D-11 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.71718 -0.00001 -0.00006 0.00000 -0.00006 3.71712 R2 3.71718 -0.00001 -0.00006 0.00000 -0.00006 3.71712 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000015 0.000450 YES RMS Force 0.000010 0.000300 YES Maximum Displacement 0.000058 0.001800 YES RMS Displacement 0.000041 0.001200 YES Predicted change in Energy=-8.084996D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.967 -DE/DX = 0.0 ! ! R2 R(1,3) 1.967 -DE/DX = 0.0 ! ! A1 L(2,1,3,-1,-1) 180.0 -DE/DX = 0.0 ! ! A2 L(2,1,3,-2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Xe 0.000000 2 F 1.967048 0.000000 3 F 1.967048 3.934095 0.000000 Stoichiometry F2Xe Framework group D*H[O(Xe),C*(F.F)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3.4374814 3.4374814 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGU) (SGG) (PIU) (PIU) (SGU) (DLTG) (DLTG) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGG) (SGU) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PHIU) (PHIU) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (DLTU) (DLTU) (PIG) (PIG) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (DLTG) (DLTG) (?A) (?A) (PIU) (PIU) (PHIU) (PHIU) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (PIG) (PIG) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PHIU) (PHIU) (SGG) (DLTU) (DLTU) (PIU) (PIU) (SGU) (DLTG) (DLTG) (PHIG) (PHIG) (PHIU) (PHIU) (DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (SGG) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (PHIG) (PHIG) (?A) (?A) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (SGU) (SGG) (SGG) (SGG) The electronic state is 1-SGG. Alpha occ. eigenvalues -- **********-187.10093-176.26696-176.26585-176.26585 Alpha occ. eigenvalues -- -39.80930 -35.19213 -35.18822 -35.18822 -26.68732 Alpha occ. eigenvalues -- -26.68636 -26.68636 -26.68368 -26.68367 -24.67719 Alpha occ. eigenvalues -- -24.67719 -7.73479 -6.02614 -6.01301 -6.01301 Alpha occ. eigenvalues -- -2.36939 -2.35711 -2.35711 -2.34222 -2.34127 Alpha occ. eigenvalues -- -1.18030 -1.17226 -0.87328 -0.56229 -0.47794 Alpha occ. eigenvalues -- -0.47794 -0.42693 -0.42693 -0.40349 -0.36031 Alpha occ. eigenvalues -- -0.36031 Alpha virt. eigenvalues -- -0.13521 -0.01401 0.01228 0.01228 0.01895 Alpha virt. eigenvalues -- 0.07200 0.07210 0.08032 0.10784 0.10784 Alpha virt. eigenvalues -- 0.11029 0.11029 0.11456 0.14826 0.15602 Alpha virt. eigenvalues -- 0.17795 0.17795 0.19912 0.19912 0.28435 Alpha virt. eigenvalues -- 0.35758 0.38409 0.40638 0.40638 0.42073 Alpha virt. eigenvalues -- 0.48937 0.48937 0.49461 0.49532 0.54839 Alpha virt. eigenvalues -- 0.54839 0.56417 0.56417 0.59026 0.59134 Alpha virt. eigenvalues -- 0.65473 0.66329 0.74934 0.74970 0.75569 Alpha virt. eigenvalues -- 0.75569 0.75862 0.75872 0.79302 0.79302 Alpha virt. eigenvalues -- 0.85531 0.87209 0.94696 0.94696 0.95728 Alpha virt. eigenvalues -- 1.15841 1.15841 1.24496 1.30449 1.63348 Alpha virt. eigenvalues -- 1.75797 1.75797 1.77617 1.77946 1.82042 Alpha virt. eigenvalues -- 2.00200 2.00200 2.08834 2.28491 2.28491 Alpha virt. eigenvalues -- 2.34391 2.36754 2.36774 2.57320 2.57320 Alpha virt. eigenvalues -- 2.58392 2.58393 2.62378 2.62379 2.63352 Alpha virt. eigenvalues -- 2.63480 2.66955 2.66955 2.68895 2.68895 Alpha virt. eigenvalues -- 2.72175 2.72701 2.73821 2.73821 2.81478 Alpha virt. eigenvalues -- 2.81512 2.82442 2.82442 2.85596 2.87830 Alpha virt. eigenvalues -- 2.87830 2.92294 3.07334 3.07360 3.24301 Alpha virt. eigenvalues -- 3.30913 3.30913 3.39225 3.39225 3.40149 Alpha virt. eigenvalues -- 3.40149 3.41727 3.55815 3.78759 3.78759 Alpha virt. eigenvalues -- 3.84967 4.47587 6.29095 6.33575 6.33575 Alpha virt. eigenvalues -- 6.34747 6.39193 6.39223 6.70610 6.70610 Alpha virt. eigenvalues -- 6.75891 8.55497 8.55535 8.56005 8.56005 Alpha virt. eigenvalues -- 8.56210 8.56210 8.59599 8.59602 8.69551 Alpha virt. eigenvalues -- 8.69551 8.82385 8.82385 8.92441 8.92575 Alpha virt. eigenvalues -- 8.92575 8.94089 8.94090 8.96863 8.98344 Alpha virt. eigenvalues -- 8.98344 8.98820 9.02813 9.02813 9.17364 Alpha virt. eigenvalues -- 9.17364 9.17854 9.17882 9.19399 9.23333 Alpha virt. eigenvalues -- 9.23935 9.50504 9.50504 9.78011 35.51608 Alpha virt. eigenvalues -- 35.51608 36.86952 78.27042 78.29122 177.67021 Alpha virt. eigenvalues -- 3113.99653 Condensed to atoms (all electrons): 1 2 3 1 Xe 56.410992 -1.246399 -1.246399 2 F -1.246399 10.219644 0.067658 3 F -1.246399 0.067658 10.219644 Mulliken charges: 1 1 Xe 0.081805 2 F -0.040903 3 F -0.040903 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe 0.081805 2 F -0.040903 3 F -0.040903 Electronic spatial extent (au): = 339.4788 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.1864 YY= -37.1864 ZZ= -47.7092 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.5076 YY= 3.5076 ZZ= -7.0152 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -45.6910 YYYY= -45.6910 ZZZZ= -323.5083 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -15.2319 XXZZ= -54.7974 YYZZ= -54.7974 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.723838118740D+02 E-N=-1.805991590767D+04 KE= 7.379587498987D+03 Symmetry AG KE= 4.181625438997D+03 Symmetry B1G KE= 1.887453972177D+02 Symmetry B2G KE= 1.949741141993D+02 Symmetry B3G KE= 1.949741141993D+02 Symmetry AU KE=-2.979043384893D-21 Symmetry B1U KE= 9.247147638347D+02 Symmetry B2U KE= 8.472768352694D+02 Symmetry B3U KE= 8.472768352694D+02 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Final structure in terms of initial Z-matrix: Xe F,1,B1 F,1,B2,2,A1 Variables: B1=1.9670476 B2=1.9670476 A1=180. 1\1\GINC-COMPUTE-0-2\FOpt\RB3LYP\Gen\F2Xe1\BESSELMAN\12-Apr-2018\0\\#N B3LYP/gen OPT FREQ\\F4Xe B3LYP/ATZP\\0,1\Xe,0.,0.,0.\F,0.,0.,1.967047 601\F,0.,0.,-1.967047601\\Version=EM64L-G09RevD.01\State=1-SGG\HF=-742 7.7982936\RMSD=4.563e-09\RMSF=6.866e-06\Dipole=0.,0.,0.\Quadrupole=2.6 078096,2.6078096,-5.2156192,0.,0.,0.\PG=D*H [O(Xe1),C*(F1.F1)]\\@ LOGIC IS A SYSTEMATIC METHOD OF COMING TO THE WRONG CONCLUSION WITH CONFIDENCE. Job cpu time: 0 days 0 hours 9 minutes 35.2 seconds. File lengths (MBytes): RWF= 24 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu Apr 12 18:07:45 2018. Link1: Proceeding to internal job step number 2. ------------------------------------------------------------------ #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/ChkBas Freq ------------------------------------------------------------------ 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=7,6=2,11=2,14=-4,16=1,25=1,30=1,67=1,70=2,71=2,74=-5,82=7,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "/scratch/webmo-13362/254213/Gau-10749.chk" --------------- F4Xe B3LYP/ATZP --------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. Xe,0,0.,0.,0. F,0,0.,0.,1.967047601 F,0,0.,0.,-1.967047601 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.967 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.967 calculate D2E/DX2 analytically ! ! A1 L(2,1,3,-1,-1) 180.0 calculate D2E/DX2 analytically ! ! A2 L(2,1,3,-2,-2) 180.0 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 Xe 0.000000 2 F 1.967048 0.000000 3 F 1.967048 3.934095 0.000000 Stoichiometry F2Xe Framework group D*H[O(Xe),C*(F.F)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.967048 3 9 0 0.000000 0.000000 -1.967048 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 3.4374814 3.4374814 Basis read from chk: "/scratch/webmo-13362/254213/Gau-10749.chk" (5D, 7F) There are 62 symmetry adapted cartesian basis functions of AG symmetry. There are 16 symmetry adapted cartesian basis functions of B1G symmetry. There are 24 symmetry adapted cartesian basis functions of B2G symmetry. There are 24 symmetry adapted cartesian basis functions of B3G symmetry. There are 8 symmetry adapted cartesian basis functions of AU symmetry. There are 42 symmetry adapted cartesian basis functions of B1U symmetry. There are 30 symmetry adapted cartesian basis functions of B2U symmetry. There are 30 symmetry adapted cartesian basis functions of B3U symmetry. There are 46 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of B1G symmetry. There are 20 symmetry adapted basis functions of B2G symmetry. There are 20 symmetry adapted basis functions of B3G symmetry. There are 8 symmetry adapted basis functions of AU symmetry. There are 34 symmetry adapted basis functions of B1U symmetry. There are 25 symmetry adapted basis functions of B2U symmetry. There are 25 symmetry adapted basis functions of B3U symmetry. 192 basis functions, 332 primitive gaussians, 236 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 272.3838118740 Hartrees. NAtoms= 3 NActive= 3 NUniq= 2 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. NBasis= 192 RedAO= T EigKep= 1.29D-03 NBF= 46 14 20 20 8 34 25 25 NBsUse= 192 1.00D-06 EigRej= -1.00D+00 NBFU= 46 14 20 20 8 34 25 25 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254213/Gau-10749.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGU) (SGG) (PIU) (PIU) (SGU) (DLTG) (DLTG) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGG) (SGU) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PHIU) (PHIU) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (DLTU) (DLTU) (PIG) (PIG) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (DLTG) (DLTG) (?A) (?A) (PIU) (PIU) (PHIU) (PHIU) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (PIG) (PIG) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PHIU) (PHIU) (SGG) (DLTU) (DLTU) (PIU) (PIU) (SGU) (DLTG) (DLTG) (PHIG) (PHIG) (PHIU) (PHIU) (DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (SGG) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (PHIG) (PHIG) (?A) (?A) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (SGU) (SGG) (SGG) (SGG) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. SCF Done: E(RB3LYP) = -7427.79829360 A.U. after 1 cycles NFock= 1 Conv=0.14D-08 -V/T= 2.0065 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 192 NBasis= 192 NAE= 36 NBE= 36 NFC= 0 NFV= 0 NROrb= 192 NOA= 36 NOB= 36 NVA= 156 NVB= 156 **** Warning!!: The largest alpha MO coefficient is 0.18017516D+02 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 1 passes. Estimated number of processors is: 3 Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Defaulting to unpruned grid for atomic number 54. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. There are 9 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 9. 9 vectors produced by pass 0 Test12= 6.24D-14 1.11D-08 XBig12= 8.23D+01 8.47D+00. Estimated number of processors is: 7 AX will form 5 AO Fock derivatives at one time. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 9 vectors produced by pass 1 Test12= 6.24D-14 1.11D-08 XBig12= 4.18D+01 1.51D+00. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 9 vectors produced by pass 2 Test12= 6.24D-14 1.11D-08 XBig12= 4.32D+00 5.29D-01. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 9 vectors produced by pass 3 Test12= 6.24D-14 1.11D-08 XBig12= 8.01D-02 1.14D-01. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 9 vectors produced by pass 4 Test12= 6.24D-14 1.11D-08 XBig12= 1.70D-03 1.07D-02. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 9 vectors produced by pass 5 Test12= 6.24D-14 1.11D-08 XBig12= 7.78D-06 7.93D-04. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 7 vectors produced by pass 6 Test12= 6.24D-14 1.11D-08 XBig12= 1.75D-08 3.31D-05. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 6 vectors produced by pass 7 Test12= 6.24D-14 1.11D-08 XBig12= 2.91D-11 1.49D-06. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. PrRfSu: requested number of processors reduced to: 3 ShMem 1 Linda. 2 vectors produced by pass 8 Test12= 6.24D-14 1.11D-08 XBig12= 4.26D-14 6.16D-08. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. 1 vectors produced by pass 9 Test12= 6.24D-14 1.11D-08 XBig12= 5.81D-16 1.13D-08. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. InvSVY: IOpt=1 It= 1 EMax= 8.88D-16 Solved reduced A of dimension 70 with 9 vectors. Estimated number of processors is: 7 CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Isotropic polarizability for W= 0.000000 34.69 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGG) (SGG) (SGU) (PIU) (PIU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (SGG) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (PIU) (PIU) Virtual (SGU) (SGG) (PIU) (PIU) (SGU) (DLTG) (DLTG) (SGG) (PIG) (PIG) (PIU) (PIU) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGG) (SGG) (SGU) (PIU) (PIU) (SGU) (PIU) (PIU) (DLTU) (DLTU) (PHIU) (PHIU) (PIG) (PIG) (DLTG) (DLTG) (SGG) (SGU) (DLTU) (DLTU) (PIG) (PIG) (DLTG) (DLTG) (PIU) (PIU) (SGU) (SGG) (PIU) (PIU) (SGG) (PIG) (PIG) (SGG) (SGU) (SGU) (PHIU) (PHIU) (DLTU) (DLTU) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (DLTG) (DLTG) (?A) (?A) (PIU) (PIU) (PHIU) (PHIU) (DLTG) (DLTG) (PHIG) (PHIG) (DLTU) (DLTU) (PIG) (PIG) (SGU) (PIG) (PIG) (SGG) (DLTG) (DLTG) (SGG) (PIU) (PIU) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (PIG) (PIG) (SGU) (SGG) (SGU) (PHIU) (PHIU) (SGG) (DLTU) (DLTU) (PIU) (PIU) (SGU) (DLTG) (DLTG) (PHIG) (PHIG) (PHIU) (PHIU) (DLTU) (DLTU) (PIG) (PIG) (PIU) (PIU) (SGG) (DLTU) (DLTU) (DLTG) (DLTG) (SGG) (PIU) (PIU) (SGU) (PIG) (PIG) (PHIG) (PHIG) (?A) (?A) (SGU) (DLTG) (DLTG) (PIG) (PIG) (SGG) (PIU) (PIU) (SGU) (SGU) (SGG) (SGG) (SGG) The electronic state is 1-SGG. Alpha occ. eigenvalues -- **********-187.10093-176.26696-176.26585-176.26585 Alpha occ. eigenvalues -- -39.80930 -35.19213 -35.18822 -35.18822 -26.68732 Alpha occ. eigenvalues -- -26.68636 -26.68636 -26.68368 -26.68367 -24.67719 Alpha occ. eigenvalues -- -24.67719 -7.73479 -6.02614 -6.01301 -6.01301 Alpha occ. eigenvalues -- -2.36939 -2.35711 -2.35711 -2.34222 -2.34127 Alpha occ. eigenvalues -- -1.18030 -1.17226 -0.87328 -0.56229 -0.47794 Alpha occ. eigenvalues -- -0.47794 -0.42693 -0.42693 -0.40349 -0.36031 Alpha occ. eigenvalues -- -0.36031 Alpha virt. eigenvalues -- -0.13521 -0.01401 0.01228 0.01228 0.01895 Alpha virt. eigenvalues -- 0.07200 0.07210 0.08032 0.10784 0.10784 Alpha virt. eigenvalues -- 0.11029 0.11029 0.11456 0.14826 0.15602 Alpha virt. eigenvalues -- 0.17795 0.17795 0.19912 0.19912 0.28435 Alpha virt. eigenvalues -- 0.35758 0.38409 0.40638 0.40638 0.42073 Alpha virt. eigenvalues -- 0.48937 0.48937 0.49461 0.49532 0.54839 Alpha virt. eigenvalues -- 0.54839 0.56417 0.56417 0.59026 0.59134 Alpha virt. eigenvalues -- 0.65473 0.66329 0.74934 0.74970 0.75569 Alpha virt. eigenvalues -- 0.75569 0.75862 0.75872 0.79302 0.79302 Alpha virt. eigenvalues -- 0.85531 0.87209 0.94696 0.94696 0.95728 Alpha virt. eigenvalues -- 1.15841 1.15841 1.24496 1.30449 1.63348 Alpha virt. eigenvalues -- 1.75797 1.75797 1.77617 1.77946 1.82042 Alpha virt. eigenvalues -- 2.00200 2.00200 2.08834 2.28491 2.28491 Alpha virt. eigenvalues -- 2.34391 2.36754 2.36774 2.57320 2.57320 Alpha virt. eigenvalues -- 2.58392 2.58393 2.62378 2.62379 2.63352 Alpha virt. eigenvalues -- 2.63480 2.66955 2.66955 2.68895 2.68895 Alpha virt. eigenvalues -- 2.72175 2.72701 2.73821 2.73821 2.81478 Alpha virt. eigenvalues -- 2.81512 2.82442 2.82442 2.85596 2.87830 Alpha virt. eigenvalues -- 2.87830 2.92294 3.07334 3.07360 3.24301 Alpha virt. eigenvalues -- 3.30913 3.30913 3.39225 3.39225 3.40149 Alpha virt. eigenvalues -- 3.40149 3.41727 3.55815 3.78759 3.78759 Alpha virt. eigenvalues -- 3.84967 4.47587 6.29095 6.33575 6.33575 Alpha virt. eigenvalues -- 6.34747 6.39193 6.39223 6.70610 6.70610 Alpha virt. eigenvalues -- 6.75891 8.55497 8.55535 8.56005 8.56005 Alpha virt. eigenvalues -- 8.56210 8.56210 8.59599 8.59602 8.69551 Alpha virt. eigenvalues -- 8.69551 8.82385 8.82385 8.92441 8.92575 Alpha virt. eigenvalues -- 8.92575 8.94089 8.94090 8.96863 8.98344 Alpha virt. eigenvalues -- 8.98344 8.98820 9.02813 9.02813 9.17364 Alpha virt. eigenvalues -- 9.17364 9.17854 9.17882 9.19399 9.23333 Alpha virt. eigenvalues -- 9.23935 9.50504 9.50504 9.78011 35.51608 Alpha virt. eigenvalues -- 35.51608 36.86952 78.27042 78.29122 177.67021 Alpha virt. eigenvalues -- 3113.99653 Condensed to atoms (all electrons): 1 2 3 1 Xe 56.410992 -1.246399 -1.246399 2 F -1.246399 10.219644 0.067658 3 F -1.246399 0.067658 10.219644 Mulliken charges: 1 1 Xe 0.081805 2 F -0.040903 3 F -0.040903 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe 0.081805 2 F -0.040903 3 F -0.040903 APT charges: 1 1 Xe 1.379049 2 F -0.689524 3 F -0.689524 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 Xe 1.379049 2 F -0.689524 3 F -0.689524 Electronic spatial extent (au): = 339.4788 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.1864 YY= -37.1864 ZZ= -47.7092 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.5076 YY= 3.5076 ZZ= -7.0152 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -45.6910 YYYY= -45.6910 ZZZZ= -323.5083 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -15.2319 XXZZ= -54.7974 YYZZ= -54.7974 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.723838118740D+02 E-N=-1.805991590853D+04 KE= 7.379587499258D+03 Symmetry AG KE= 4.181625439077D+03 Symmetry B1G KE= 1.887453972365D+02 Symmetry B2G KE= 1.949741142343D+02 Symmetry B3G KE= 1.949741142343D+02 Symmetry AU KE=-5.511595864489D-21 Symmetry B1U KE= 9.247147638721D+02 Symmetry B2U KE= 8.472768353019D+02 Symmetry B3U KE= 8.472768353019D+02 Exact polarizability: 25.050 0.000 25.050 0.000 0.000 53.955 Approx polarizability: 35.883 0.000 35.883 0.000 0.000 104.911 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 1 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Full mass-weighted force constant matrix: Low frequencies --- -0.0055 -0.0055 0.0217 121.6825 121.6825 244.2307 Low frequencies --- 244.2307 592.6046 643.6020 Diagonal vibrational polarizability: 6.6619062 6.6619062 16.8359894 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 PIU PIU SGG Frequencies -- 244.2307 244.2307 592.6046 Red. masses -- 23.4963 23.4963 18.9984 Frc consts -- 0.8258 0.8258 3.9309 IR Inten -- 14.7661 14.7661 0.0000 Atom AN X Y Z X Y Z X Y Z 1 54 0.20 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 2 9 -0.69 0.00 0.00 0.00 -0.69 0.00 0.00 0.00 0.71 3 9 -0.69 0.00 0.00 0.00 -0.69 0.00 0.00 0.00 -0.71 4 SGU Frequencies -- 643.6020 Red. masses -- 23.4963 Frc consts -- 5.7343 IR Inten -- 259.1435 Atom AN X Y Z 1 54 0.00 0.00 0.20 2 9 0.00 0.00 -0.69 3 9 0.00 0.00 -0.69 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 54 and mass 131.90420 Atom 2 has atomic number 9 and mass 18.99840 Atom 3 has atomic number 9 and mass 18.99840 Molecular mass: 169.90101 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.000000 525.018461 525.018461 X 0.000000 1.000000 0.000000 Y 0.000000 0.000000 1.000000 Z 1.000000 0.000000 0.000000 This molecule is a prolate symmetric top. Rotational symmetry number 2. Warning -- assumption of classical behavior for rotation may cause significant error Rotational temperature (Kelvin) 0.16497 Rotational constant (GHZ): 3.437481 Zero-point vibrational energy 10315.8 (Joules/Mol) 2.46554 (Kcal/Mol) Warning -- explicit consideration of 3 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 351.39 351.39 852.62 926.00 (Kelvin) Zero-point correction= 0.003929 (Hartree/Particle) Thermal correction to Energy= 0.007580 Thermal correction to Enthalpy= 0.008525 Thermal correction to Gibbs Free Energy= -0.020552 Sum of electronic and zero-point Energies= -7427.794365 Sum of electronic and thermal Energies= -7427.790713 Sum of electronic and thermal Enthalpies= -7427.789769 Sum of electronic and thermal Free Energies= -7427.818846 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 4.757 10.501 61.198 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 41.298 Rotational 0.592 1.987 15.513 Vibrational 3.276 5.533 4.387 Vibration 1 0.660 1.772 1.772 Vibration 2 0.660 1.772 1.772 Vibration 3 0.950 1.048 0.463 Q Log10(Q) Ln(Q) Total Bot 0.284082D+10 9.453444 21.767358 Total V=0 0.182260D+12 11.260692 25.928703 Vib (Bot) 0.361162D-01 -1.442298 -3.321013 Vib (Bot) 1 0.801292D+00 -0.096209 -0.221530 Vib (Bot) 2 0.801292D+00 -0.096209 -0.221530 Vib (Bot) 3 0.253887D+00 -0.595360 -1.370868 Vib (V=0) 0.231713D+01 0.364951 0.840331 Vib (V=0) 1 0.144449D+01 0.159716 0.367759 Vib (V=0) 2 0.144449D+01 0.159716 0.367759 Vib (V=0) 3 0.106077D+01 0.025620 0.058991 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.870461D+08 7.939749 18.281948 Rotational 0.903633D+03 2.955992 6.806424 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 -0.000014548 3 9 0.000000000 0.000000000 0.000014548 ------------------------------------------------------------------- Cartesian Forces: Max 0.000014548 RMS 0.000006858 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000014548 RMS 0.000010287 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 A1 A2 R1 0.24185 R2 0.01064 0.24185 A1 0.00000 0.00000 0.22999 A2 0.00000 0.00000 0.00000 0.22999 ITU= 0 Eigenvalues --- 0.22999 0.22999 0.23121 0.25249 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00004074 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.32D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.71718 -0.00001 0.00000 -0.00006 -0.00006 3.71712 R2 3.71718 -0.00001 0.00000 -0.00006 -0.00006 3.71712 A1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000015 0.000450 YES RMS Force 0.000010 0.000300 YES Maximum Displacement 0.000058 0.001800 YES RMS Displacement 0.000041 0.001200 YES Predicted change in Energy=-8.382563D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.967 -DE/DX = 0.0 ! ! R2 R(1,3) 1.967 -DE/DX = 0.0 ! ! A1 L(2,1,3,-1,-1) 180.0 -DE/DX = 0.0 ! ! A2 L(2,1,3,-2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-COMPUTE-0-2\Freq\RB3LYP\Gen\F2Xe1\BESSELMAN\12-Apr-2018\0\\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/ChkBas Freq\\F4Xe B3LYP/ATZP\\0,1\Xe,0.,0.,0.\F,0.,0.,1.967047601\F,0.,0.,-1.967047601\ \Version=EM64L-G09RevD.01\State=1-SGG\HF=-7427.7982936\RMSD=1.413e-09\ RMSF=6.858e-06\ZeroPoint=0.0039291\Thermal=0.0075804\Dipole=0.,0.,0.\D ipoleDeriv=0.6684397,0.,0.,0.,0.6684397,0.,0.,0.,2.8002668,-0.3342198, 0.,0.,0.,-0.3342198,0.,0.,0.,-1.4001334,-0.3342198,0.,0.,0.,-0.3342198 ,0.,0.,0.,-1.4001334\Polar=25.0499095,0.,25.0499095,0.,0.,53.955347\PG =D*H [O(Xe1),C*(F1.F1)]\NImag=0\\0.06658889,0.,0.06658889,0.,0.,0.4624 1936,-0.03329444,0.,0.,0.02196996,0.,-0.03329444,0.,0.,0.02196996,0.,0 .,-0.23120968,0.,0.,0.24184823,-0.03329444,0.,0.,0.01132449,0.,0.,0.02 196996,0.,-0.03329444,0.,0.,0.01132449,0.,0.,0.02196996,0.,0.,-0.23120 968,0.,0.,-0.01063855,0.,0.,0.24184823\\0.,0.,0.,0.,0.,0.00001455,0.,0 .,-0.00001455\\\@ I CLAIM NOT TO HAVE CONTROLLED EVENTS, BUT CONFESS PLAINLY THAT EVENTS HAVE CONTROLLED ME. A. LINCOLN Job cpu time: 0 days 0 hours 27 minutes 55.8 seconds. File lengths (MBytes): RWF= 24 Int= 0 D2E= 0 Chk= 4 Scr= 1 Normal termination of Gaussian 09 at Thu Apr 12 18:10:40 2018.