Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/254224/Gau-14235.inp" -scrdir="/scratch/webmo-13362/254224/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 14236. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 12-Apr-2018 ****************************************** %NProcShared=12 Will use up to 12 processors via shared memory. --------------------- #N B3LYP/gen OPT FREQ --------------------- 1/14=-1,18=20,19=15,26=3,38=1/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=7,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=7,6=1,11=2,16=1,25=1,30=1,71=1,74=-5,82=7/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; --------------- F6Xe B3LYP/ATZP --------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Xe 0. 0. 0. F 0. 0. 2.02385 F 0. 0. -2.02385 F 0. 2.02385 0. F 2.02385 0. 0. F 0. -2.02385 0. F -2.02385 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.0238 estimate D2E/DX2 ! ! R2 R(1,3) 2.0238 estimate D2E/DX2 ! ! R3 R(1,4) 2.0238 estimate D2E/DX2 ! ! R4 R(1,5) 2.0238 estimate D2E/DX2 ! ! R5 R(1,6) 2.0238 estimate D2E/DX2 ! ! R6 R(1,7) 2.0238 estimate D2E/DX2 ! ! A1 A(2,1,4) 90.0 estimate D2E/DX2 ! ! A2 A(2,1,5) 90.0 estimate D2E/DX2 ! ! A3 A(2,1,6) 90.0 estimate D2E/DX2 ! ! A4 A(2,1,7) 90.0 estimate D2E/DX2 ! ! A5 A(3,1,4) 90.0 estimate D2E/DX2 ! ! A6 A(3,1,5) 90.0 estimate D2E/DX2 ! ! A7 A(3,1,6) 90.0 estimate D2E/DX2 ! ! A8 A(3,1,7) 90.0 estimate D2E/DX2 ! ! A9 A(4,1,5) 90.0 estimate D2E/DX2 ! ! A10 A(4,1,7) 90.0 estimate D2E/DX2 ! ! A11 A(5,1,6) 90.0 estimate D2E/DX2 ! ! A12 A(6,1,7) 90.0 estimate D2E/DX2 ! ! A13 L(2,1,3,4,-1) 180.0 estimate D2E/DX2 ! ! A14 L(4,1,6,2,-1) 180.0 estimate D2E/DX2 ! ! A15 L(5,1,7,2,-1) 180.0 estimate D2E/DX2 ! ! A16 L(2,1,3,4,-2) 180.0 estimate D2E/DX2 ! ! A17 L(4,1,6,2,-2) 180.0 estimate D2E/DX2 ! ! A18 L(5,1,7,2,-2) 180.0 estimate D2E/DX2 ! ! D1 D(2,1,5,4) -90.0 estimate D2E/DX2 ! ! D2 D(2,1,7,4) 90.0 estimate D2E/DX2 ! ! D3 D(2,1,6,5) -90.0 estimate D2E/DX2 ! ! D4 D(2,1,7,6) -90.0 estimate D2E/DX2 ! ! D5 D(3,1,5,4) 90.0 estimate D2E/DX2 ! ! D6 D(3,1,7,4) -90.0 estimate D2E/DX2 ! ! D7 D(3,1,6,5) 90.0 estimate D2E/DX2 ! ! D8 D(3,1,7,6) 90.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 42 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 2.023846 3 9 0 0.000000 0.000000 -2.023846 4 9 0 0.000000 2.023846 0.000000 5 9 0 2.023846 0.000000 0.000000 6 9 0 0.000000 -2.023846 0.000000 7 9 0 -2.023846 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Xe 0.000000 2 F 2.023846 0.000000 3 F 2.023846 4.047692 0.000000 4 F 2.023846 2.862150 2.862150 0.000000 5 F 2.023846 2.862150 2.862150 2.862150 0.000000 6 F 2.023846 2.862150 2.862150 4.047692 2.862150 7 F 2.023846 2.862150 2.862150 2.862150 4.047692 6 7 6 F 0.000000 7 F 2.862150 0.000000 Stoichiometry F6Xe Framework group OH[O(Xe),3C4(F.F)] Deg. of freedom 1 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 2.023846 3 9 0 0.000000 0.000000 -2.023846 4 9 0 0.000000 2.023846 0.000000 5 9 0 2.023846 0.000000 0.000000 6 9 0 0.000000 -2.023846 0.000000 7 9 0 -2.023846 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.6236229 1.6236229 1.6236229 General basis read from cards: (5D, 7F) There are 112 symmetry adapted cartesian basis functions of AG symmetry. There are 42 symmetry adapted cartesian basis functions of B1G symmetry. There are 42 symmetry adapted cartesian basis functions of B2G symmetry. There are 42 symmetry adapted cartesian basis functions of B3G symmetry. There are 18 symmetry adapted cartesian basis functions of AU symmetry. There are 68 symmetry adapted cartesian basis functions of B1U symmetry. There are 68 symmetry adapted cartesian basis functions of B2U symmetry. There are 68 symmetry adapted cartesian basis functions of B3U symmetry. There are 86 symmetry adapted basis functions of AG symmetry. There are 36 symmetry adapted basis functions of B1G symmetry. There are 36 symmetry adapted basis functions of B2G symmetry. There are 36 symmetry adapted basis functions of B3G symmetry. There are 18 symmetry adapted basis functions of AU symmetry. There are 56 symmetry adapted basis functions of B1U symmetry. There are 56 symmetry adapted basis functions of B2U symmetry. There are 56 symmetry adapted basis functions of B3U symmetry. 380 basis functions, 612 primitive gaussians, 460 cartesian basis functions 54 alpha electrons 54 beta electrons nuclear repulsion energy 973.9295329494 Hartrees. NAtoms= 7 NActive= 7 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 6 ShMem 1 Linda. NBasis= 380 RedAO= T EigKep= 4.68D-04 NBF= 86 36 36 36 18 56 56 56 NBsUse= 380 1.00D-06 EigRej= -1.00D+00 NBFU= 86 36 36 36 18 56 56 56 Defaulting to unpruned grid for atomic number 54. ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Initial guess orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2U) (T2U) (T2U) (A1G) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A2U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EU) (EU) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (EG) (EG) (A1G) (T2G) (T2G) (T2G) (A2G) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A1G) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (A1G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T2G) (T2G) (T2G) (A2U) (A1G) (T2U) (T2U) (T2U) (A2G) (T2G) (T2G) (T2G) (EU) (EU) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A2G) (A2U) (EG) (EG) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (A1G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (EG) (EG) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (A1G) (EG) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A2U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (EG) (EG) (A2G) (T1G) (T1G) (T1G) (A2U) (T1U) (T1U) (T1U) (A1G) (A2U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (A2G) (A1G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) The electronic state of the initial guess is 1-A1G. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7827.15643397 A.U. after 11 cycles NFock= 11 Conv=0.48D-08 -V/T= 2.0062 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (EG) (EG) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (A2G) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (A2U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A2G) (EU) (EU) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (A2U) (T2U) (T2U) (T2U) (EG) (EG) (A2G) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A1G) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (EG) (EG) (A2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (EU) (EU) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (EG) (EG) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A2G) (T1U) (T1U) (T1U) (A2U) (T1U) (T1U) (T1U) (A1G) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A2U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EG) (EG) (T1U) (T1U) (T1U) (EU) (EU) (T2G) (T2G) (T2G) (EG) (EG) (A2G) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EG) (EG) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues -- **********-187.21702-176.38180-176.38180-176.38180 Alpha occ. eigenvalues -- -39.93181 -35.31160 -35.31160 -35.31160 -26.80639 Alpha occ. eigenvalues -- -26.80639 -26.80633 -26.80633 -26.80633 -24.75101 Alpha occ. eigenvalues -- -24.75098 -24.75098 -24.75098 -24.75097 -24.75097 Alpha occ. eigenvalues -- -7.87840 -6.16307 -6.16307 -6.16307 -2.51941 Alpha occ. eigenvalues -- -2.51941 -2.50807 -2.50807 -2.50807 -1.28445 Alpha occ. eigenvalues -- -1.23126 -1.23126 -1.23126 -1.21517 -1.21517 Alpha occ. eigenvalues -- -0.97075 -0.65375 -0.65375 -0.65375 -0.50516 Alpha occ. eigenvalues -- -0.50516 -0.50469 -0.50469 -0.50469 -0.48214 Alpha occ. eigenvalues -- -0.48214 -0.48214 -0.47814 -0.47814 -0.47814 Alpha occ. eigenvalues -- -0.46220 -0.46220 -0.46220 -0.39918 Alpha virt. eigenvalues -- -0.22747 -0.22747 -0.22747 -0.00591 0.01182 Alpha virt. eigenvalues -- 0.01182 0.01182 0.07212 0.07212 0.09111 Alpha virt. eigenvalues -- 0.09111 0.09111 0.10319 0.10319 0.10319 Alpha virt. eigenvalues -- 0.13812 0.14078 0.14078 0.14078 0.15991 Alpha virt. eigenvalues -- 0.15991 0.15991 0.16958 0.16958 0.16958 Alpha virt. eigenvalues -- 0.20921 0.22060 0.22060 0.22060 0.26670 Alpha virt. eigenvalues -- 0.26670 0.26670 0.27628 0.27628 0.30708 Alpha virt. eigenvalues -- 0.33438 0.33438 0.33438 0.33957 0.33957 Alpha virt. eigenvalues -- 0.37774 0.37774 0.37774 0.38547 0.38547 Alpha virt. eigenvalues -- 0.38547 0.39957 0.42470 0.42470 0.42470 Alpha virt. eigenvalues -- 0.53051 0.53051 0.53051 0.58500 0.58892 Alpha virt. eigenvalues -- 0.58892 0.65912 0.65912 0.65912 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.76833 0.76833 0.76833 Alpha virt. eigenvalues -- 0.77909 0.77909 0.78637 0.78637 0.78637 Alpha virt. eigenvalues -- 0.81267 0.81267 0.81267 0.85003 0.85469 Alpha virt. eigenvalues -- 0.85469 0.89356 0.89356 0.89356 0.89933 Alpha virt. eigenvalues -- 0.89933 0.89933 0.90162 0.90162 0.91865 Alpha virt. eigenvalues -- 1.01912 1.01912 1.01912 1.03531 1.03531 Alpha virt. eigenvalues -- 1.03531 1.03655 1.08012 1.08012 1.08012 Alpha virt. eigenvalues -- 1.12978 1.12978 1.12978 1.15947 1.34745 Alpha virt. eigenvalues -- 1.34745 1.34745 1.37200 1.37200 1.66697 Alpha virt. eigenvalues -- 1.75491 1.75491 1.77371 1.77371 1.77371 Alpha virt. eigenvalues -- 1.86269 1.86269 1.86269 1.96529 1.97932 Alpha virt. eigenvalues -- 1.97932 1.97932 2.15373 2.15373 2.15373 Alpha virt. eigenvalues -- 2.17898 2.17898 2.23508 2.23508 2.23508 Alpha virt. eigenvalues -- 2.41881 2.45267 2.47007 2.47007 2.47007 Alpha virt. eigenvalues -- 2.50983 2.50983 2.50983 2.52779 2.53864 Alpha virt. eigenvalues -- 2.53864 2.56137 2.56137 2.56137 2.58433 Alpha virt. eigenvalues -- 2.58433 2.58433 2.58454 2.58454 2.58454 Alpha virt. eigenvalues -- 2.62808 2.62808 2.63241 2.63241 2.63241 Alpha virt. eigenvalues -- 2.68055 2.68055 2.68055 2.68871 2.68871 Alpha virt. eigenvalues -- 2.68871 2.69202 2.69202 2.69202 2.71945 Alpha virt. eigenvalues -- 2.71945 2.75776 2.75776 2.75776 2.76268 Alpha virt. eigenvalues -- 2.76268 2.82739 2.82739 2.82739 2.87193 Alpha virt. eigenvalues -- 2.87193 2.87193 2.87925 2.91700 2.91700 Alpha virt. eigenvalues -- 2.91700 2.93520 2.93520 2.96424 2.98699 Alpha virt. eigenvalues -- 2.98699 2.98699 3.07225 3.10042 3.10042 Alpha virt. eigenvalues -- 3.10042 3.27813 3.27813 3.27813 3.32722 Alpha virt. eigenvalues -- 3.36824 3.36824 3.36824 3.40131 3.40131 Alpha virt. eigenvalues -- 3.41284 3.41284 3.41284 3.43434 3.43434 Alpha virt. eigenvalues -- 3.43434 3.48656 3.48656 3.48656 3.73641 Alpha virt. eigenvalues -- 3.73641 3.73641 3.77792 3.77792 3.77792 Alpha virt. eigenvalues -- 3.79070 3.79070 3.79070 3.84431 3.84431 Alpha virt. eigenvalues -- 3.91913 3.91913 3.91913 4.00634 4.67785 Alpha virt. eigenvalues -- 4.67785 6.28798 6.28798 6.32900 6.35680 Alpha virt. eigenvalues -- 6.35680 6.35680 6.62504 6.62504 6.62504 Alpha virt. eigenvalues -- 6.89172 6.89172 6.89172 6.91443 8.48440 Alpha virt. eigenvalues -- 8.48440 8.48440 8.48489 8.48489 8.49047 Alpha virt. eigenvalues -- 8.49047 8.49047 8.50308 8.50308 8.50308 Alpha virt. eigenvalues -- 8.50692 8.50692 8.50692 8.51108 8.51108 Alpha virt. eigenvalues -- 8.52004 8.52004 8.52004 8.52197 8.52197 Alpha virt. eigenvalues -- 8.52197 8.52964 8.53306 8.53306 8.53306 Alpha virt. eigenvalues -- 8.60572 8.69891 8.69891 8.69891 8.70628 Alpha virt. eigenvalues -- 8.77329 8.77329 8.77329 8.78230 8.78230 Alpha virt. eigenvalues -- 8.78230 8.79322 8.88034 8.88034 8.88034 Alpha virt. eigenvalues -- 8.89446 8.89446 8.89446 8.90724 8.90724 Alpha virt. eigenvalues -- 8.91646 8.91646 8.91646 8.91885 8.91885 Alpha virt. eigenvalues -- 8.93398 8.93398 8.93398 8.94701 8.94701 Alpha virt. eigenvalues -- 9.03364 9.03965 9.10680 9.10680 9.10680 Alpha virt. eigenvalues -- 9.10867 9.10867 9.10867 9.12810 9.12810 Alpha virt. eigenvalues -- 9.13845 9.13845 9.13845 9.18631 9.18631 Alpha virt. eigenvalues -- 9.18631 9.21036 9.21036 9.21036 9.41606 Alpha virt. eigenvalues -- 9.41606 9.41606 9.64233 9.73687 9.73687 Alpha virt. eigenvalues -- 36.62548 36.62548 36.62548 78.18469 78.18469 Alpha virt. eigenvalues -- 78.35736 78.35736 78.35736 78.96891 177.86729 Alpha virt. eigenvalues -- 3114.25202 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Xe 61.649706 -1.282372 -1.282372 -1.282372 -1.282372 -1.282372 2 F -1.282372 10.509643 0.081681 -0.075382 -0.075382 -0.075382 3 F -1.282372 0.081681 10.509643 -0.075382 -0.075382 -0.075382 4 F -1.282372 -0.075382 -0.075382 10.509643 -0.075382 0.081681 5 F -1.282372 -0.075382 -0.075382 -0.075382 10.509643 -0.075382 6 F -1.282372 -0.075382 -0.075382 0.081681 -0.075382 10.509643 7 F -1.282372 -0.075382 -0.075382 -0.075382 0.081681 -0.075382 7 1 Xe -1.282372 2 F -0.075382 3 F -0.075382 4 F -0.075382 5 F 0.081681 6 F -0.075382 7 F 10.509643 Mulliken charges: 1 1 Xe 0.044529 2 F -0.007421 3 F -0.007421 4 F -0.007421 5 F -0.007421 6 F -0.007421 7 F -0.007421 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe 0.044529 2 F -0.007421 3 F -0.007421 4 F -0.007421 5 F -0.007421 6 F -0.007421 7 F -0.007421 Electronic spatial extent (au): = 930.8262 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -63.2044 YY= -63.2044 ZZ= -63.2044 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -321.5095 YYYY= -321.5095 ZZZZ= -321.5095 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -99.6419 XXZZ= -99.6419 YYZZ= -99.6419 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 9.739295329494D+02 E-N=-2.041095209127D+04 KE= 7.779025011858D+03 Symmetry AG KE= 4.362412003117D+03 Symmetry B1G KE= 2.014916987783D+02 Symmetry B2G KE= 2.014916987783D+02 Symmetry B3G KE= 2.014916987783D+02 Symmetry AU KE=-4.543914275718D-20 Symmetry B1U KE= 9.373793041354D+02 Symmetry B2U KE= 9.373793041354D+02 Symmetry B3U KE= 9.373793041354D+02 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 -0.049376367 3 9 0.000000000 0.000000000 0.049376367 4 9 0.000000000 -0.049376367 0.000000000 5 9 -0.049376367 0.000000000 0.000000000 6 9 0.000000000 0.049376367 0.000000000 7 9 0.049376367 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.049376367 RMS 0.026392778 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.049376367 RMS 0.021380594 Search for a local minimum. Step number 1 out of a maximum of 42 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.06912 0.07307 0.09380 0.10138 0.11033 Eigenvalues --- 0.12615 0.12615 0.16979 0.16979 0.16979 Eigenvalues --- 0.16979 0.16979 0.16979 0.19389 0.25000 RFO step: Lambda=-6.28736783D-02 EMin= 6.91176059D-02 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.577 Iteration 1 RMS(Cart)= 0.05303301 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.70D-12 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 R2 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 R3 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 R4 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 R5 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 R6 3.82451 -0.04938 0.00000 -0.12247 -0.12247 3.70204 A1 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A3 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A4 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A6 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A9 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A10 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A11 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A12 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D1 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D3 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D4 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D6 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 Item Value Threshold Converged? Maximum Force 0.049376 0.000450 NO RMS Force 0.021381 0.000300 NO Maximum Displacement 0.122474 0.001800 NO RMS Displacement 0.053033 0.001200 NO Predicted change in Energy=-2.864371D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.959035 3 9 0 0.000000 0.000000 -1.959035 4 9 0 0.000000 1.959035 0.000000 5 9 0 1.959035 0.000000 0.000000 6 9 0 0.000000 -1.959035 0.000000 7 9 0 -1.959035 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Xe 0.000000 2 F 1.959035 0.000000 3 F 1.959035 3.918071 0.000000 4 F 1.959035 2.770494 2.770494 0.000000 5 F 1.959035 2.770494 2.770494 2.770494 0.000000 6 F 1.959035 2.770494 2.770494 3.918071 2.770494 7 F 1.959035 2.770494 2.770494 2.770494 3.918071 6 7 6 F 0.000000 7 F 2.770494 0.000000 Stoichiometry F6Xe Framework group OH[O(Xe),3C4(F.F)] Deg. of freedom 1 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.959035 3 9 0 0.000000 0.000000 -1.959035 4 9 0 0.000000 1.959035 0.000000 5 9 0 1.959035 0.000000 0.000000 6 9 0 0.000000 -1.959035 0.000000 7 9 0 -1.959035 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.7328285 1.7328285 1.7328285 Basis read from rwf: (5D, 7F) There are 112 symmetry adapted cartesian basis functions of AG symmetry. There are 42 symmetry adapted cartesian basis functions of B1G symmetry. There are 42 symmetry adapted cartesian basis functions of B2G symmetry. There are 42 symmetry adapted cartesian basis functions of B3G symmetry. There are 18 symmetry adapted cartesian basis functions of AU symmetry. There are 68 symmetry adapted cartesian basis functions of B1U symmetry. There are 68 symmetry adapted cartesian basis functions of B2U symmetry. There are 68 symmetry adapted cartesian basis functions of B3U symmetry. There are 86 symmetry adapted basis functions of AG symmetry. There are 36 symmetry adapted basis functions of B1G symmetry. There are 36 symmetry adapted basis functions of B2G symmetry. There are 36 symmetry adapted basis functions of B3G symmetry. There are 18 symmetry adapted basis functions of AU symmetry. There are 56 symmetry adapted basis functions of B1U symmetry. There are 56 symmetry adapted basis functions of B2U symmetry. There are 56 symmetry adapted basis functions of B3U symmetry. 380 basis functions, 612 primitive gaussians, 460 cartesian basis functions 54 alpha electrons 54 beta electrons nuclear repulsion energy 1006.1500151702 Hartrees. NAtoms= 7 NActive= 7 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 6 ShMem 1 Linda. NBasis= 380 RedAO= T EigKep= 3.57D-04 NBF= 86 36 36 36 18 56 56 56 NBsUse= 380 1.00D-06 EigRej= -1.00D+00 NBFU= 86 36 36 36 18 56 56 56 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254224/Gau-14236.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (A1G) (A1G) (EG) (EG) (EG) (EG) (A1G) (A1G) (A1G) (EG) (EG) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A2G) (EG) (EG) (A1G) (EG) (EG) (A2G) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A1G) (A1G) (EG) (EG) (EG) (EG) (EG) (EG) (A2G) (A1G) (A1G) (EG) (EG) (A1G) (A2G) (EG) (EG) (EG) (EG) (A1G) (EG) (EG) (EG) (EG) (EG) (EG) (A2G) (A1G) (EG) (EG) (A1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (A2U) (A2U) (EU) (EU) (A2U) (EU) (EU) (A2U) (A2U) (EU) (EU) (A2U) (EU) (EU) (A2U) (A2U) (EU) (EU) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7827.18297248 A.U. after 10 cycles NFock= 10 Conv=0.43D-08 -V/T= 2.0061 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 -0.021095291 3 9 0.000000000 0.000000000 0.021095291 4 9 0.000000000 -0.021095291 0.000000000 5 9 -0.021095291 0.000000000 0.000000000 6 9 0.000000000 0.021095291 0.000000000 7 9 0.021095291 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.021095291 RMS 0.011275908 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.021095291 RMS 0.009134529 Search for a local minimum. Step number 2 out of a maximum of 42 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -2.65D-02 DEPred=-2.86D-02 R= 9.27D-01 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0000D-01 Trust test= 9.27D-01 RLast= 3.00D-01 DXMaxT set to 5.05D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.06912 0.07307 0.09380 0.10138 0.11033 Eigenvalues --- 0.12615 0.12615 0.16979 0.16979 0.16979 Eigenvalues --- 0.16979 0.16979 0.19389 0.23091 0.25000 RFO step: Lambda= 0.00000000D+00 EMin= 6.91176059D-02 Quartic linear search produced a step of 0.56861. Iteration 1 RMS(Cart)= 0.03015505 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.29D-11 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 R2 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 R3 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 R4 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 R5 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 R6 3.70204 -0.02110 -0.06964 0.00000 -0.06964 3.63240 A1 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A3 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A4 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A6 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A9 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A10 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A11 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A12 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D1 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D3 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D4 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D6 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 Item Value Threshold Converged? Maximum Force 0.021095 0.000450 NO RMS Force 0.009135 0.000300 NO Maximum Displacement 0.069640 0.001800 NO RMS Displacement 0.030155 0.001200 NO Predicted change in Energy=-5.454848D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Xe 0.000000 2 F 1.922183 0.000000 3 F 1.922183 3.844367 0.000000 4 F 1.922183 2.718378 2.718378 0.000000 5 F 1.922183 2.718378 2.718378 2.718378 0.000000 6 F 1.922183 2.718378 2.718378 3.844367 2.718378 7 F 1.922183 2.718378 2.718378 2.718378 3.844367 6 7 6 F 0.000000 7 F 2.718378 0.000000 Stoichiometry F6Xe Framework group OH[O(Xe),3C4(F.F)] Deg. of freedom 1 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.7999087 1.7999087 1.7999087 Basis read from rwf: (5D, 7F) There are 112 symmetry adapted cartesian basis functions of AG symmetry. There are 42 symmetry adapted cartesian basis functions of B1G symmetry. There are 42 symmetry adapted cartesian basis functions of B2G symmetry. There are 42 symmetry adapted cartesian basis functions of B3G symmetry. There are 18 symmetry adapted cartesian basis functions of AU symmetry. There are 68 symmetry adapted cartesian basis functions of B1U symmetry. There are 68 symmetry adapted cartesian basis functions of B2U symmetry. There are 68 symmetry adapted cartesian basis functions of B3U symmetry. There are 86 symmetry adapted basis functions of AG symmetry. There are 36 symmetry adapted basis functions of B1G symmetry. There are 36 symmetry adapted basis functions of B2G symmetry. There are 36 symmetry adapted basis functions of B3G symmetry. There are 18 symmetry adapted basis functions of AU symmetry. There are 56 symmetry adapted basis functions of B1U symmetry. There are 56 symmetry adapted basis functions of B2U symmetry. There are 56 symmetry adapted basis functions of B3U symmetry. 380 basis functions, 612 primitive gaussians, 460 cartesian basis functions 54 alpha electrons 54 beta electrons nuclear repulsion energy 1025.4398468859 Hartrees. NAtoms= 7 NActive= 7 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 6 ShMem 1 Linda. NBasis= 380 RedAO= T EigKep= 3.05D-04 NBF= 86 36 36 36 18 56 56 56 NBsUse= 380 1.00D-06 EigRej= -1.00D+00 NBFU= 86 36 36 36 18 56 56 56 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254224/Gau-14236.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (A1G) (A1G) (EG) (EG) (EG) (EG) (A1G) (A1G) (A1G) (EG) (EG) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A2G) (EG) (EG) (A1G) (EG) (EG) (A2G) (EG) (EG) (A1G) (EG) (EG) (A1G) (EG) (EG) (A1G) (A1G) (EG) (EG) (EG) (EG) (EG) (EG) (A2G) (A1G) (A1G) (EG) (EG) (A1G) (A2G) (EG) (EG) (EG) (EG) (A1G) (EG) (EG) (EG) (EG) (EG) (EG) (A2G) (A1G) (EG) (EG) (A1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T1G) (T2G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T2G) (T1G) (T2G) (T1G) (T2G) (T1G) (A2U) (A2U) (EU) (EU) (A2U) (EU) (EU) (A2U) (A2U) (EU) (EU) (A2U) (EU) (EU) (A2U) (A2U) (EU) (EU) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T1U) (T2U) (T1U) (T2U) (T2U) (T1U) (T1U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T2U) (T1U) (T1U) ExpMin= 1.70D-02 ExpMax= 5.30D+06 ExpMxC= 6.55D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 7 ShMem 1 Linda. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7827.18751505 A.U. after 10 cycles NFock= 10 Conv=0.20D-08 -V/T= 2.0060 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 0.000001141 3 9 0.000000000 0.000000000 -0.000001141 4 9 0.000000000 0.000001141 0.000000000 5 9 0.000001141 0.000000000 0.000000000 6 9 0.000000000 -0.000001141 0.000000000 7 9 -0.000001141 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001141 RMS 0.000000610 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000001141 RMS 0.000000494 Search for a local minimum. Step number 3 out of a maximum of 42 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -4.54D-03 DEPred=-5.45D-03 R= 8.33D-01 TightC=F SS= 1.41D+00 RLast= 1.71D-01 DXNew= 8.4853D-01 5.1175D-01 Trust test= 8.33D-01 RLast= 1.71D-01 DXMaxT set to 5.12D-01 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.06912 0.07307 0.09380 0.10138 0.11033 Eigenvalues --- 0.12615 0.12615 0.16979 0.16979 0.16979 Eigenvalues --- 0.16979 0.16979 0.19389 0.25000 0.30294 RFO step: Lambda= 0.00000000D+00 EMin= 6.91176059D-02 Quartic linear search produced a step of -0.00005. Iteration 1 RMS(Cart)= 0.00000149 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.44D-12 for atom 7. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R2 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R3 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R4 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R5 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R6 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 A1 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A3 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A4 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A6 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A9 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A10 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A11 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A12 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D1 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D3 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D4 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D6 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 Item Value Threshold Converged? Maximum Force 0.000001 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000003 0.001800 YES RMS Displacement 0.000001 0.001200 YES Predicted change in Energy=-1.278846D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9222 -DE/DX = 0.0 ! ! R2 R(1,3) 1.9222 -DE/DX = 0.0 ! ! R3 R(1,4) 1.9222 -DE/DX = 0.0 ! ! R4 R(1,5) 1.9222 -DE/DX = 0.0 ! ! R5 R(1,6) 1.9222 -DE/DX = 0.0 ! ! R6 R(1,7) 1.9222 -DE/DX = 0.0 ! ! A1 A(2,1,4) 90.0 -DE/DX = 0.0 ! ! A2 A(2,1,5) 90.0 -DE/DX = 0.0 ! ! A3 A(2,1,6) 90.0 -DE/DX = 0.0 ! ! A4 A(2,1,7) 90.0 -DE/DX = 0.0 ! ! A5 A(3,1,4) 90.0 -DE/DX = 0.0 ! ! A6 A(3,1,5) 90.0 -DE/DX = 0.0 ! ! A7 A(3,1,6) 90.0 -DE/DX = 0.0 ! ! A8 A(3,1,7) 90.0 -DE/DX = 0.0 ! ! A9 A(4,1,5) 90.0 -DE/DX = 0.0 ! ! A10 A(4,1,7) 90.0 -DE/DX = 0.0 ! ! A11 A(5,1,6) 90.0 -DE/DX = 0.0 ! ! A12 A(6,1,7) 90.0 -DE/DX = 0.0 ! ! A13 L(2,1,3,4,-1) 180.0 -DE/DX = 0.0 ! ! A14 L(4,1,6,2,-1) 180.0 -DE/DX = 0.0 ! ! A15 L(5,1,7,2,-1) 180.0 -DE/DX = 0.0 ! ! A16 L(2,1,3,4,-2) 180.0 -DE/DX = 0.0 ! ! A17 L(4,1,6,2,-2) 180.0 -DE/DX = 0.0 ! ! A18 L(5,1,7,2,-2) 180.0 -DE/DX = 0.0 ! ! D1 D(2,1,5,4) -90.0 -DE/DX = 0.0 ! ! D2 D(2,1,7,4) 90.0 -DE/DX = 0.0 ! ! D3 D(2,1,6,5) -90.0 -DE/DX = 0.0 ! ! D4 D(2,1,7,6) -90.0 -DE/DX = 0.0 ! ! D5 D(3,1,5,4) 90.0 -DE/DX = 0.0 ! ! D6 D(3,1,7,4) -90.0 -DE/DX = 0.0 ! ! D7 D(3,1,6,5) 90.0 -DE/DX = 0.0 ! ! D8 D(3,1,7,6) 90.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Xe 0.000000 2 F 1.922183 0.000000 3 F 1.922183 3.844367 0.000000 4 F 1.922183 2.718378 2.718378 0.000000 5 F 1.922183 2.718378 2.718378 2.718378 0.000000 6 F 1.922183 2.718378 2.718378 3.844367 2.718378 7 F 1.922183 2.718378 2.718378 2.718378 3.844367 6 7 6 F 0.000000 7 F 2.718378 0.000000 Stoichiometry F6Xe Framework group OH[O(Xe),3C4(F.F)] Deg. of freedom 1 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.7999087 1.7999087 1.7999087 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (EU) (EU) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (A2U) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (A1G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (A2U) (T2U) (T2U) (T2U) (EU) (EU) (A2G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EG) (EG) (T2G) (T2G) (T2G) (EU) (EU) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A2U) (EG) (EG) (A2G) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (A2G) (T1G) (T1G) (T1G) (A2U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (A1G) (EU) (EU) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EG) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues -- **********-187.17644-176.34077-176.34077-176.34077 Alpha occ. eigenvalues -- -39.89426 -35.27388 -35.27388 -35.27388 -26.76815 Alpha occ. eigenvalues -- -26.76815 -26.76810 -26.76810 -26.76810 -24.74565 Alpha occ. eigenvalues -- -24.74562 -24.74562 -24.74562 -24.74562 -24.74562 Alpha occ. eigenvalues -- -7.85010 -6.13536 -6.13536 -6.13536 -2.49832 Alpha occ. eigenvalues -- -2.49832 -2.48561 -2.48561 -2.48561 -1.31876 Alpha occ. eigenvalues -- -1.24905 -1.24905 -1.24905 -1.22378 -1.22378 Alpha occ. eigenvalues -- -0.93970 -0.66532 -0.66532 -0.66532 -0.51865 Alpha occ. eigenvalues -- -0.51865 -0.51865 -0.51392 -0.51392 -0.49045 Alpha occ. eigenvalues -- -0.49045 -0.49045 -0.48465 -0.48465 -0.48465 Alpha occ. eigenvalues -- -0.46323 -0.46323 -0.46323 -0.36520 Alpha virt. eigenvalues -- -0.17076 -0.17076 -0.17076 -0.00414 0.01225 Alpha virt. eigenvalues -- 0.01225 0.01225 0.07492 0.07492 0.09335 Alpha virt. eigenvalues -- 0.09335 0.09335 0.10372 0.10372 0.10372 Alpha virt. eigenvalues -- 0.14235 0.14444 0.14444 0.14444 0.16305 Alpha virt. eigenvalues -- 0.16305 0.16305 0.20004 0.20004 0.20004 Alpha virt. eigenvalues -- 0.20404 0.22538 0.22538 0.22538 0.27770 Alpha virt. eigenvalues -- 0.27770 0.27770 0.28044 0.28044 0.29640 Alpha virt. eigenvalues -- 0.34256 0.34256 0.35651 0.35651 0.35651 Alpha virt. eigenvalues -- 0.37592 0.37592 0.37592 0.40385 0.40385 Alpha virt. eigenvalues -- 0.40385 0.40954 0.41527 0.41527 0.41527 Alpha virt. eigenvalues -- 0.55234 0.55234 0.55234 0.59499 0.66558 Alpha virt. eigenvalues -- 0.66558 0.66911 0.66911 0.66911 0.69037 Alpha virt. eigenvalues -- 0.69037 0.69037 0.78430 0.78430 0.78430 Alpha virt. eigenvalues -- 0.79201 0.79201 0.79201 0.80318 0.80318 Alpha virt. eigenvalues -- 0.80833 0.82629 0.82629 0.82629 0.86478 Alpha virt. eigenvalues -- 0.86478 0.91501 0.91501 0.91501 0.91706 Alpha virt. eigenvalues -- 0.91706 0.93043 0.93043 0.93043 0.96087 Alpha virt. eigenvalues -- 1.06268 1.06550 1.06550 1.06550 1.08848 Alpha virt. eigenvalues -- 1.08848 1.08848 1.12010 1.12010 1.12010 Alpha virt. eigenvalues -- 1.16346 1.16346 1.16346 1.17323 1.30898 Alpha virt. eigenvalues -- 1.30898 1.45769 1.45769 1.45769 1.69485 Alpha virt. eigenvalues -- 1.79379 1.79379 1.79379 1.82301 1.82301 Alpha virt. eigenvalues -- 1.91916 1.91916 1.91916 2.04541 2.04541 Alpha virt. eigenvalues -- 2.04541 2.12152 2.15507 2.15507 2.15507 Alpha virt. eigenvalues -- 2.17035 2.17035 2.17035 2.20065 2.20065 Alpha virt. eigenvalues -- 2.39795 2.44213 2.45518 2.45518 2.45518 Alpha virt. eigenvalues -- 2.51506 2.51506 2.51974 2.53284 2.53284 Alpha virt. eigenvalues -- 2.53284 2.56791 2.56791 2.56791 2.56792 Alpha virt. eigenvalues -- 2.56792 2.56792 2.57537 2.57537 2.57537 Alpha virt. eigenvalues -- 2.63680 2.63680 2.63680 2.70164 2.70164 Alpha virt. eigenvalues -- 2.70695 2.70695 2.70695 2.73423 2.73423 Alpha virt. eigenvalues -- 2.73423 2.74592 2.74592 2.75241 2.75241 Alpha virt. eigenvalues -- 2.75241 2.76630 2.76630 2.85057 2.85057 Alpha virt. eigenvalues -- 2.85057 2.86884 2.86884 2.86884 2.93012 Alpha virt. eigenvalues -- 2.93012 2.93012 2.97416 2.97416 2.97416 Alpha virt. eigenvalues -- 2.99200 3.02263 3.02263 3.08214 3.11260 Alpha virt. eigenvalues -- 3.11997 3.11997 3.11997 3.24244 3.24244 Alpha virt. eigenvalues -- 3.24244 3.25378 3.37099 3.37099 3.37099 Alpha virt. eigenvalues -- 3.44899 3.44899 3.44899 3.45946 3.45946 Alpha virt. eigenvalues -- 3.45946 3.49613 3.49613 3.59225 3.59225 Alpha virt. eigenvalues -- 3.59225 3.59282 3.59282 3.59282 3.84698 Alpha virt. eigenvalues -- 3.84698 3.88770 3.88770 3.88770 3.92012 Alpha virt. eigenvalues -- 3.92012 3.92012 3.92051 3.92051 3.92051 Alpha virt. eigenvalues -- 4.03736 4.03736 4.03736 4.22439 4.95571 Alpha virt. eigenvalues -- 4.95571 6.35821 6.35821 6.35821 6.36540 Alpha virt. eigenvalues -- 6.36540 6.41483 6.74008 6.74008 6.74008 Alpha virt. eigenvalues -- 6.97682 7.06529 7.06529 7.06529 8.47473 Alpha virt. eigenvalues -- 8.47473 8.47473 8.48779 8.48779 8.48779 Alpha virt. eigenvalues -- 8.49124 8.49124 8.50756 8.50756 8.50756 Alpha virt. eigenvalues -- 8.51597 8.51597 8.51597 8.53079 8.53079 Alpha virt. eigenvalues -- 8.53079 8.53244 8.53244 8.54800 8.54800 Alpha virt. eigenvalues -- 8.54800 8.57412 8.58165 8.58165 8.58165 Alpha virt. eigenvalues -- 8.63190 8.77941 8.79015 8.79015 8.79015 Alpha virt. eigenvalues -- 8.79629 8.79629 8.79629 8.80656 8.83595 Alpha virt. eigenvalues -- 8.83595 8.83595 8.89710 8.89710 8.89710 Alpha virt. eigenvalues -- 8.91933 8.93523 8.93523 8.96323 8.96323 Alpha virt. eigenvalues -- 8.96323 8.97445 8.97445 8.97445 8.97751 Alpha virt. eigenvalues -- 8.97751 8.98314 8.98314 9.00774 9.00774 Alpha virt. eigenvalues -- 9.00774 9.08065 9.08853 9.08853 9.08853 Alpha virt. eigenvalues -- 9.12030 9.12030 9.17294 9.17294 9.17294 Alpha virt. eigenvalues -- 9.20020 9.20020 9.20020 9.27020 9.27020 Alpha virt. eigenvalues -- 9.27020 9.28702 9.28702 9.28702 9.53557 Alpha virt. eigenvalues -- 9.53557 9.53557 9.81159 9.93205 9.93205 Alpha virt. eigenvalues -- 36.95850 36.95850 36.95850 78.30712 78.30712 Alpha virt. eigenvalues -- 78.44413 78.44413 78.44413 79.09670 178.18883 Alpha virt. eigenvalues -- 3114.61882 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Xe 66.453441 -1.974431 -1.974431 -1.974431 -1.974431 -1.974431 2 F -1.974431 11.237899 0.105440 -0.117513 -0.117513 -0.117513 3 F -1.974431 0.105440 11.237899 -0.117513 -0.117513 -0.117513 4 F -1.974431 -0.117513 -0.117513 11.237899 -0.117513 0.105440 5 F -1.974431 -0.117513 -0.117513 -0.117513 11.237899 -0.117513 6 F -1.974431 -0.117513 -0.117513 0.105440 -0.117513 11.237899 7 F -1.974431 -0.117513 -0.117513 -0.117513 0.105440 -0.117513 7 1 Xe -1.974431 2 F -0.117513 3 F -0.117513 4 F -0.117513 5 F 0.105440 6 F -0.117513 7 F 11.237899 Mulliken charges: 1 1 Xe -0.606857 2 F 0.101143 3 F 0.101143 4 F 0.101143 5 F 0.101143 6 F 0.101143 7 F 0.101143 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe -0.606857 2 F 0.101143 3 F 0.101143 4 F 0.101143 5 F 0.101143 6 F 0.101143 7 F 0.101143 Electronic spatial extent (au): = 851.6559 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -62.3926 YY= -62.3926 ZZ= -62.3926 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -295.4482 YYYY= -295.4482 ZZZZ= -295.4482 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.8335 XXZZ= -90.8335 YYZZ= -90.8335 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.025439846886D+03 E-N=-2.051655618005D+04 KE= 7.780444123849D+03 Symmetry AG KE= 4.363444558761D+03 Symmetry B1G KE= 2.014645942019D+02 Symmetry B2G KE= 2.014645942019D+02 Symmetry B3G KE= 2.014645942019D+02 Symmetry AU KE=-2.769430368951D-20 Symmetry B1U KE= 9.375352608276D+02 Symmetry B2U KE= 9.375352608276D+02 Symmetry B3U KE= 9.375352608276D+02 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. 1\1\GINC-COMPUTE-0-2\FOpt\RB3LYP\Gen\F6Xe1\BESSELMAN\12-Apr-2018\0\\#N B3LYP/gen OPT FREQ\\F6Xe B3LYP/ATZP\\0,1\Xe,0.,0.,0.\F,0.,0.,1.922183 3397\F,0.,0.,-1.9221833397\F,0.,1.9221833397,0.\F,1.9221833397,0.,0.\F ,0.,-1.9221833397,0.\F,-1.9221833397,0.,0.\\Version=EM64L-G09RevD.01\S tate=1-A1G\HF=-7827.1875151\RMSD=1.970e-09\RMSF=6.097e-07\Dipole=0.,0. ,0.\Quadrupole=0.,0.,0.,0.,0.,0.\PG=OH [O(Xe1),3C4(F1.F1)]\\@ SEE YOU NOW, YOUR BAIT OF FALSEHOOD TAKES THIS CARP OF TRUTH. AND THUS DO WE OF WISDOM AND OF REACH... BY INDIRECTIONS FIND DIRECTIONS OUT. -- HAMLET, II, 1 Job cpu time: 0 days 0 hours 19 minutes 8.8 seconds. File lengths (MBytes): RWF= 88 Int= 0 D2E= 0 Chk= 10 Scr= 1 Normal termination of Gaussian 09 at Thu Apr 12 18:56:28 2018. Link1: Proceeding to internal job step number 2. ------------------------------------------------------------------ #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/ChkBas Freq ------------------------------------------------------------------ 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=7,6=2,11=2,14=-4,16=1,25=1,30=1,67=1,70=2,71=2,74=-5,82=7,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "/scratch/webmo-13362/254224/Gau-14236.chk" --------------- F6Xe B3LYP/ATZP --------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. Xe,0,0.,0.,0. F,0,0.,0.,1.9221833397 F,0,0.,0.,-1.9221833397 F,0,0.,1.9221833397,0. F,0,1.9221833397,0.,0. F,0,0.,-1.9221833397,0. F,0,-1.9221833397,0.,0. Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9222 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.9222 calculate D2E/DX2 analytically ! ! R3 R(1,4) 1.9222 calculate D2E/DX2 analytically ! ! R4 R(1,5) 1.9222 calculate D2E/DX2 analytically ! ! R5 R(1,6) 1.9222 calculate D2E/DX2 analytically ! ! R6 R(1,7) 1.9222 calculate D2E/DX2 analytically ! ! A1 A(2,1,4) 90.0 calculate D2E/DX2 analytically ! ! A2 A(2,1,5) 90.0 calculate D2E/DX2 analytically ! ! A3 A(2,1,6) 90.0 calculate D2E/DX2 analytically ! ! A4 A(2,1,7) 90.0 calculate D2E/DX2 analytically ! ! A5 A(3,1,4) 90.0 calculate D2E/DX2 analytically ! ! A6 A(3,1,5) 90.0 calculate D2E/DX2 analytically ! ! A7 A(3,1,6) 90.0 calculate D2E/DX2 analytically ! ! A8 A(3,1,7) 90.0 calculate D2E/DX2 analytically ! ! A9 A(4,1,5) 90.0 calculate D2E/DX2 analytically ! ! A10 A(4,1,7) 90.0 calculate D2E/DX2 analytically ! ! A11 A(5,1,6) 90.0 calculate D2E/DX2 analytically ! ! A12 A(6,1,7) 90.0 calculate D2E/DX2 analytically ! ! A13 L(2,1,3,4,-1) 180.0 calculate D2E/DX2 analytically ! ! A14 L(4,1,6,2,-1) 180.0 calculate D2E/DX2 analytically ! ! A15 L(5,1,7,2,-1) 180.0 calculate D2E/DX2 analytically ! ! A16 L(2,1,3,4,-2) 180.0 calculate D2E/DX2 analytically ! ! A17 L(4,1,6,2,-2) 180.0 calculate D2E/DX2 analytically ! ! A18 L(5,1,7,2,-2) 180.0 calculate D2E/DX2 analytically ! ! D1 D(2,1,5,4) -90.0 calculate D2E/DX2 analytically ! ! D2 D(2,1,7,4) 90.0 calculate D2E/DX2 analytically ! ! D3 D(2,1,6,5) -90.0 calculate D2E/DX2 analytically ! ! D4 D(2,1,7,6) -90.0 calculate D2E/DX2 analytically ! ! D5 D(3,1,5,4) 90.0 calculate D2E/DX2 analytically ! ! D6 D(3,1,7,4) -90.0 calculate D2E/DX2 analytically ! ! D7 D(3,1,6,5) 90.0 calculate D2E/DX2 analytically ! ! D8 D(3,1,7,6) 90.0 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Xe 0.000000 2 F 1.922183 0.000000 3 F 1.922183 3.844367 0.000000 4 F 1.922183 2.718378 2.718378 0.000000 5 F 1.922183 2.718378 2.718378 2.718378 0.000000 6 F 1.922183 2.718378 2.718378 3.844367 2.718378 7 F 1.922183 2.718378 2.718378 2.718378 3.844367 6 7 6 F 0.000000 7 F 2.718378 0.000000 Stoichiometry F6Xe Framework group OH[O(Xe),3C4(F.F)] Deg. of freedom 1 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2H NOp 8 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 54 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 1.922183 3 9 0 0.000000 0.000000 -1.922183 4 9 0 0.000000 1.922183 0.000000 5 9 0 1.922183 0.000000 0.000000 6 9 0 0.000000 -1.922183 0.000000 7 9 0 -1.922183 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.7999087 1.7999087 1.7999087 Basis read from chk: "/scratch/webmo-13362/254224/Gau-14236.chk" (5D, 7F) There are 112 symmetry adapted cartesian basis functions of AG symmetry. There are 42 symmetry adapted cartesian basis functions of B1G symmetry. There are 42 symmetry adapted cartesian basis functions of B2G symmetry. There are 42 symmetry adapted cartesian basis functions of B3G symmetry. There are 18 symmetry adapted cartesian basis functions of AU symmetry. There are 68 symmetry adapted cartesian basis functions of B1U symmetry. There are 68 symmetry adapted cartesian basis functions of B2U symmetry. There are 68 symmetry adapted cartesian basis functions of B3U symmetry. There are 86 symmetry adapted basis functions of AG symmetry. There are 36 symmetry adapted basis functions of B1G symmetry. There are 36 symmetry adapted basis functions of B2G symmetry. There are 36 symmetry adapted basis functions of B3G symmetry. There are 18 symmetry adapted basis functions of AU symmetry. There are 56 symmetry adapted basis functions of B1U symmetry. There are 56 symmetry adapted basis functions of B2U symmetry. There are 56 symmetry adapted basis functions of B3U symmetry. 380 basis functions, 612 primitive gaussians, 460 cartesian basis functions 54 alpha electrons 54 beta electrons nuclear repulsion energy 1025.4398468859 Hartrees. NAtoms= 7 NActive= 7 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 6 ShMem 1 Linda. NBasis= 380 RedAO= T EigKep= 3.05D-04 NBF= 86 36 36 36 18 56 56 56 NBsUse= 380 1.00D-06 EigRej= -1.00D+00 NBFU= 86 36 36 36 18 56 56 56 Defaulting to unpruned grid for atomic number 54. Initial guess from the checkpoint file: "/scratch/webmo-13362/254224/Gau-14236.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (EU) (EU) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (A2U) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (A1G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (A2U) (T2U) (T2U) (T2U) (EU) (EU) (A2G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EG) (EG) (T2G) (T2G) (T2G) (EU) (EU) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A2U) (EG) (EG) (A2G) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (A2G) (T1G) (T1G) (T1G) (A2U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (A1G) (EU) (EU) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EG) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. SCF Done: E(RB3LYP) = -7827.18751505 A.U. after 2 cycles NFock= 2 Conv=0.35D-09 -V/T= 2.0060 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 380 NBasis= 380 NAE= 54 NBE= 54 NFC= 0 NFV= 0 NROrb= 380 NOA= 54 NOB= 54 NVA= 326 NVB= 326 **** Warning!!: The largest alpha MO coefficient is 0.49095624D+02 PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 2 ShMem 1 Linda. Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 2 centers at a time, making 4 passes. Estimated number of processors is: 3 Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. CoulSu: requested number of processors reduced to: 3 ShMem 1 Linda. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Defaulting to unpruned grid for atomic number 54. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. There are 9 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 9. 9 vectors produced by pass 0 Test12= 1.96D-13 1.11D-08 XBig12= 9.40D+01 7.15D+00. Estimated number of processors is: 6 AX will form 5 AO Fock derivatives at one time. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 1 Test12= 1.96D-13 1.11D-08 XBig12= 5.78D+01 1.52D+00. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 2 Test12= 1.96D-13 1.11D-08 XBig12= 7.57D-01 2.92D-01. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 3 Test12= 1.96D-13 1.11D-08 XBig12= 1.60D-02 3.83D-02. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 4 Test12= 1.96D-13 1.11D-08 XBig12= 9.00D-04 6.61D-03. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 5 Test12= 1.96D-13 1.11D-08 XBig12= 3.64D-05 1.37D-03. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 6 Test12= 1.96D-13 1.11D-08 XBig12= 2.32D-06 3.17D-04. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 9 vectors produced by pass 7 Test12= 1.96D-13 1.11D-08 XBig12= 3.11D-08 5.51D-05. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 6 vectors produced by pass 8 Test12= 1.96D-13 1.11D-08 XBig12= 2.47D-10 2.98D-06. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. PrRfSu: requested number of processors reduced to: 3 ShMem 1 Linda. 4 vectors produced by pass 9 Test12= 1.96D-13 1.11D-08 XBig12= 1.19D-11 1.23D-06. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 1 vectors produced by pass 10 Test12= 1.96D-13 1.11D-08 XBig12= 1.71D-13 1.15D-07. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. 1 vectors produced by pass 11 Test12= 1.96D-13 1.11D-08 XBig12= 2.02D-15 1.14D-08. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. InvSVY: IOpt=1 It= 1 EMax= 3.55D-15 Solved reduced A of dimension 84 with 9 vectors. Estimated number of processors is: 6 CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. CoulSu: requested number of processors reduced to: 6 ShMem 1 Linda. Isotropic polarizability for W= 0.000000 57.16 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (A1G) Virtual (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (A1G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A2U) (EG) (EG) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (EU) (EU) (A1G) (T1U) (T1U) (T1U) (EG) (EG) (T2G) (T2G) (T2G) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (A2U) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (A1G) (T1G) (T1G) (T1G) (T2G) (T2G) (T2G) (EG) (EG) (A1G) (A2U) (T2U) (T2U) (T2U) (EU) (EU) (A2G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (T1G) (T1G) (T1G) (EG) (EG) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (EG) (EG) (T2G) (T2G) (T2G) (EU) (EU) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (A2U) (EG) (EG) (A2G) (A1G) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (T1U) (T1U) (T1U) (EG) (EG) (T1G) (T1G) (T1G) (T2U) (T2U) (T2U) (EG) (EG) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (A2U) (T2U) (T2U) (T2U) (A1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EU) (EU) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (A2G) (T1G) (T1G) (T1G) (A2U) (A1G) (T1U) (T1U) (T1U) (T2U) (T2U) (T2U) (A2U) (T2G) (T2G) (T2G) (T2G) (T2G) (T2G) (A1G) (EU) (EU) (T2G) (T2G) (T2G) (T2U) (T2U) (T2U) (EG) (EG) (EG) (EG) (T1U) (T1U) (T1U) (A2G) (T1U) (T1U) (T1U) (EG) (EG) (T2U) (T2U) (T2U) (T1G) (T1G) (T1G) (T1U) (T1U) (T1U) (T2G) (T2G) (T2G) (T1G) (T1G) (T1G) (A1G) (EG) (EG) (T1U) (T1U) (T1U) (EG) (EG) (T1U) (T1U) (T1U) (A1G) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues -- **********-187.17644-176.34077-176.34077-176.34077 Alpha occ. eigenvalues -- -39.89426 -35.27388 -35.27388 -35.27388 -26.76815 Alpha occ. eigenvalues -- -26.76815 -26.76810 -26.76810 -26.76810 -24.74565 Alpha occ. eigenvalues -- -24.74562 -24.74562 -24.74562 -24.74562 -24.74562 Alpha occ. eigenvalues -- -7.85010 -6.13536 -6.13536 -6.13536 -2.49832 Alpha occ. eigenvalues -- -2.49832 -2.48561 -2.48561 -2.48561 -1.31876 Alpha occ. eigenvalues -- -1.24905 -1.24905 -1.24905 -1.22378 -1.22378 Alpha occ. eigenvalues -- -0.93970 -0.66532 -0.66532 -0.66532 -0.51865 Alpha occ. eigenvalues -- -0.51865 -0.51865 -0.51392 -0.51392 -0.49045 Alpha occ. eigenvalues -- -0.49045 -0.49045 -0.48465 -0.48465 -0.48465 Alpha occ. eigenvalues -- -0.46323 -0.46323 -0.46323 -0.36520 Alpha virt. eigenvalues -- -0.17076 -0.17076 -0.17076 -0.00414 0.01225 Alpha virt. eigenvalues -- 0.01225 0.01225 0.07492 0.07492 0.09335 Alpha virt. eigenvalues -- 0.09335 0.09335 0.10372 0.10372 0.10372 Alpha virt. eigenvalues -- 0.14235 0.14444 0.14444 0.14444 0.16305 Alpha virt. eigenvalues -- 0.16305 0.16305 0.20004 0.20004 0.20004 Alpha virt. eigenvalues -- 0.20404 0.22538 0.22538 0.22538 0.27770 Alpha virt. eigenvalues -- 0.27770 0.27770 0.28044 0.28044 0.29640 Alpha virt. eigenvalues -- 0.34256 0.34256 0.35651 0.35651 0.35651 Alpha virt. eigenvalues -- 0.37592 0.37592 0.37592 0.40385 0.40385 Alpha virt. eigenvalues -- 0.40385 0.40954 0.41527 0.41527 0.41527 Alpha virt. eigenvalues -- 0.55234 0.55234 0.55234 0.59499 0.66558 Alpha virt. eigenvalues -- 0.66558 0.66911 0.66911 0.66911 0.69037 Alpha virt. eigenvalues -- 0.69037 0.69037 0.78430 0.78430 0.78430 Alpha virt. eigenvalues -- 0.79201 0.79201 0.79201 0.80318 0.80318 Alpha virt. eigenvalues -- 0.80833 0.82629 0.82629 0.82629 0.86478 Alpha virt. eigenvalues -- 0.86478 0.91501 0.91501 0.91501 0.91706 Alpha virt. eigenvalues -- 0.91706 0.93043 0.93043 0.93043 0.96087 Alpha virt. eigenvalues -- 1.06268 1.06550 1.06550 1.06550 1.08848 Alpha virt. eigenvalues -- 1.08848 1.08848 1.12010 1.12010 1.12010 Alpha virt. eigenvalues -- 1.16346 1.16346 1.16346 1.17323 1.30898 Alpha virt. eigenvalues -- 1.30898 1.45769 1.45769 1.45769 1.69485 Alpha virt. eigenvalues -- 1.79379 1.79379 1.79379 1.82301 1.82301 Alpha virt. eigenvalues -- 1.91916 1.91916 1.91916 2.04541 2.04541 Alpha virt. eigenvalues -- 2.04541 2.12152 2.15507 2.15507 2.15507 Alpha virt. eigenvalues -- 2.17035 2.17035 2.17035 2.20065 2.20065 Alpha virt. eigenvalues -- 2.39795 2.44213 2.45518 2.45518 2.45518 Alpha virt. eigenvalues -- 2.51506 2.51506 2.51974 2.53284 2.53284 Alpha virt. eigenvalues -- 2.53284 2.56791 2.56791 2.56791 2.56792 Alpha virt. eigenvalues -- 2.56792 2.56792 2.57537 2.57537 2.57537 Alpha virt. eigenvalues -- 2.63680 2.63680 2.63680 2.70164 2.70164 Alpha virt. eigenvalues -- 2.70695 2.70695 2.70695 2.73423 2.73423 Alpha virt. eigenvalues -- 2.73423 2.74592 2.74592 2.75241 2.75241 Alpha virt. eigenvalues -- 2.75241 2.76630 2.76630 2.85057 2.85057 Alpha virt. eigenvalues -- 2.85057 2.86884 2.86884 2.86884 2.93012 Alpha virt. eigenvalues -- 2.93012 2.93012 2.97416 2.97416 2.97416 Alpha virt. eigenvalues -- 2.99200 3.02263 3.02263 3.08214 3.11260 Alpha virt. eigenvalues -- 3.11997 3.11997 3.11997 3.24244 3.24244 Alpha virt. eigenvalues -- 3.24244 3.25378 3.37099 3.37099 3.37099 Alpha virt. eigenvalues -- 3.44899 3.44899 3.44899 3.45946 3.45946 Alpha virt. eigenvalues -- 3.45946 3.49613 3.49613 3.59225 3.59225 Alpha virt. eigenvalues -- 3.59225 3.59282 3.59282 3.59282 3.84698 Alpha virt. eigenvalues -- 3.84698 3.88770 3.88770 3.88770 3.92012 Alpha virt. eigenvalues -- 3.92012 3.92012 3.92051 3.92051 3.92051 Alpha virt. eigenvalues -- 4.03736 4.03736 4.03736 4.22439 4.95571 Alpha virt. eigenvalues -- 4.95571 6.35821 6.35821 6.35821 6.36541 Alpha virt. eigenvalues -- 6.36541 6.41483 6.74008 6.74008 6.74008 Alpha virt. eigenvalues -- 6.97682 7.06529 7.06529 7.06529 8.47473 Alpha virt. eigenvalues -- 8.47473 8.47473 8.48779 8.48779 8.48779 Alpha virt. eigenvalues -- 8.49124 8.49124 8.50756 8.50756 8.50756 Alpha virt. eigenvalues -- 8.51597 8.51597 8.51597 8.53079 8.53079 Alpha virt. eigenvalues -- 8.53079 8.53244 8.53244 8.54800 8.54800 Alpha virt. eigenvalues -- 8.54800 8.57412 8.58165 8.58165 8.58165 Alpha virt. eigenvalues -- 8.63190 8.77941 8.79015 8.79015 8.79015 Alpha virt. eigenvalues -- 8.79629 8.79629 8.79629 8.80656 8.83595 Alpha virt. eigenvalues -- 8.83595 8.83595 8.89710 8.89710 8.89710 Alpha virt. eigenvalues -- 8.91933 8.93523 8.93523 8.96323 8.96323 Alpha virt. eigenvalues -- 8.96323 8.97445 8.97445 8.97445 8.97751 Alpha virt. eigenvalues -- 8.97751 8.98314 8.98314 9.00774 9.00774 Alpha virt. eigenvalues -- 9.00774 9.08065 9.08853 9.08853 9.08853 Alpha virt. eigenvalues -- 9.12030 9.12030 9.17294 9.17294 9.17294 Alpha virt. eigenvalues -- 9.20020 9.20020 9.20020 9.27020 9.27020 Alpha virt. eigenvalues -- 9.27020 9.28702 9.28702 9.28702 9.53557 Alpha virt. eigenvalues -- 9.53557 9.53557 9.81159 9.93205 9.93205 Alpha virt. eigenvalues -- 36.95850 36.95850 36.95850 78.30712 78.30712 Alpha virt. eigenvalues -- 78.44413 78.44413 78.44413 79.09670 178.18883 Alpha virt. eigenvalues -- 3114.61882 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Xe 66.453429 -1.974429 -1.974429 -1.974429 -1.974429 -1.974429 2 F -1.974429 11.237899 0.105440 -0.117513 -0.117513 -0.117513 3 F -1.974429 0.105440 11.237899 -0.117513 -0.117513 -0.117513 4 F -1.974429 -0.117513 -0.117513 11.237899 -0.117513 0.105440 5 F -1.974429 -0.117513 -0.117513 -0.117513 11.237899 -0.117513 6 F -1.974429 -0.117513 -0.117513 0.105440 -0.117513 11.237899 7 F -1.974429 -0.117513 -0.117513 -0.117513 0.105440 -0.117513 7 1 Xe -1.974429 2 F -0.117513 3 F -0.117513 4 F -0.117513 5 F 0.105440 6 F -0.117513 7 F 11.237899 Mulliken charges: 1 1 Xe -0.606855 2 F 0.101142 3 F 0.101142 4 F 0.101142 5 F 0.101142 6 F 0.101142 7 F 0.101142 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Xe -0.606855 2 F 0.101142 3 F 0.101142 4 F 0.101142 5 F 0.101142 6 F 0.101142 7 F 0.101142 APT charges: 1 1 Xe 3.603815 2 F -0.600636 3 F -0.600636 4 F -0.600636 5 F -0.600636 6 F -0.600636 7 F -0.600636 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 Xe 3.603815 2 F -0.600636 3 F -0.600636 4 F -0.600636 5 F -0.600636 6 F -0.600636 7 F -0.600636 Electronic spatial extent (au): = 851.6559 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -62.3926 YY= -62.3926 ZZ= -62.3926 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -295.4482 YYYY= -295.4482 ZZZZ= -295.4482 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.8335 XXZZ= -90.8335 YYZZ= -90.8335 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.025439846886D+03 E-N=-2.051655618018D+04 KE= 7.780444123778D+03 Symmetry AG KE= 4.363444558654D+03 Symmetry B1G KE= 2.014645942028D+02 Symmetry B2G KE= 2.014645942028D+02 Symmetry B3G KE= 2.014645942028D+02 Symmetry AU KE= 3.886341982224D-21 Symmetry B1U KE= 9.375352608387D+02 Symmetry B2U KE= 9.375352608387D+02 Symmetry B3U KE= 9.375352608387D+02 Exact polarizability: 57.161 0.000 57.161 0.000 0.000 57.161 Approx polarizability: 117.969 0.000 117.969 0.000 0.000 117.969 PrsmSu: requested number of processors reduced to: 7 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. PrsmSu: requested number of processors reduced to: 1 ShMem 1 Linda. Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. CoulSu: requested number of processors reduced to: 1 ShMem 1 Linda. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Defaulting to unpruned grid for atomic number 54. Full mass-weighted force constant matrix: Low frequencies --- -0.0260 -0.0260 -0.0260 74.5290 74.5290 74.5290 Low frequencies --- 101.3232 101.3232 101.3232 Diagonal vibrational polarizability: 21.9264486 21.9264489 21.9264487 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 T1U T1U T1U Frequencies -- 101.3232 101.3232 101.3232 Red. masses -- 22.1249 22.1249 22.1249 Frc consts -- 0.1338 0.1338 0.1338 IR Inten -- 0.4535 0.4535 0.4535 Atom AN X Y Z X Y Z X Y Z 1 54 0.01 0.17 0.00 -0.03 0.00 0.16 0.16 -0.01 0.03 2 9 -0.02 -0.44 0.00 0.09 -0.01 0.30 -0.43 0.01 0.06 3 9 -0.02 -0.44 0.00 0.09 -0.01 0.30 -0.43 0.01 0.06 4 9 -0.02 0.31 0.01 0.09 0.01 -0.43 -0.43 -0.01 -0.09 5 9 0.01 -0.44 0.01 -0.06 -0.01 -0.43 0.30 0.01 -0.09 6 9 -0.02 0.31 0.01 0.09 0.01 -0.43 -0.43 -0.01 -0.09 7 9 0.01 -0.44 0.01 -0.06 -0.01 -0.43 0.30 0.01 -0.09 4 5 6 T2U T2U T2U Frequencies -- 153.2623 153.2623 153.2623 Red. masses -- 18.9984 18.9984 18.9984 Frc consts -- 0.2629 0.2629 0.2629 IR Inten -- 0.0000 0.0000 0.0000 Atom AN X Y Z X Y Z X Y Z 1 54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 9 0.50 0.00 0.00 0.02 0.00 0.00 0.00 0.50 0.00 3 9 0.50 0.00 0.00 0.02 0.00 0.00 0.00 0.50 0.00 4 9 -0.50 0.00 -0.02 -0.02 0.00 0.50 0.00 0.00 0.00 5 9 0.00 0.00 0.02 0.00 0.00 -0.50 0.00 -0.50 0.00 6 9 -0.50 0.00 -0.02 -0.02 0.00 0.50 0.00 0.00 0.00 7 9 0.00 0.00 0.02 0.00 0.00 -0.50 0.00 -0.50 0.00 7 8 9 T2G T2G T2G Frequencies -- 230.3736 230.3736 230.3736 Red. masses -- 18.9984 18.9984 18.9984 Frc consts -- 0.5941 0.5941 0.5941 IR Inten -- 0.0000 0.0000 0.0000 Atom AN X Y Z X Y Z X Y Z 1 54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2 9 -0.50 0.00 0.00 0.00 0.08 0.00 0.00 -0.49 0.00 3 9 0.50 0.00 0.00 0.00 -0.08 0.00 0.00 0.49 0.00 4 9 0.00 0.00 0.00 0.49 0.00 0.08 0.08 0.00 -0.49 5 9 0.00 0.00 -0.50 0.00 0.49 0.00 0.00 0.08 0.00 6 9 0.00 0.00 0.00 -0.49 0.00 -0.08 -0.08 0.00 0.49 7 9 0.00 0.00 0.50 0.00 -0.49 0.00 0.00 -0.08 0.00 10 11 12 EG EG T1U Frequencies -- 603.9181 603.9181 664.0418 Red. masses -- 18.9984 18.9984 25.5181 Frc consts -- 4.0825 4.0825 6.6296 IR Inten -- 0.0000 0.0000 339.7969 Atom AN X Y Z X Y Z X Y Z 1 54 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.01 0.15 2 9 0.00 0.00 -0.41 0.00 0.00 -0.41 -0.06 0.00 -0.43 3 9 0.00 0.00 0.41 0.00 0.00 0.41 -0.06 0.00 -0.43 4 9 0.00 0.56 0.00 0.00 -0.15 0.00 -0.06 -0.04 -0.05 5 9 -0.15 0.00 0.00 0.56 0.00 0.00 -0.52 0.00 -0.05 6 9 0.00 -0.56 0.00 0.00 0.15 0.00 -0.06 -0.04 -0.05 7 9 0.15 0.00 0.00 -0.56 0.00 0.00 -0.52 0.00 -0.05 13 14 15 T1U T1U A1G Frequencies -- 664.0418 664.0418 678.9154 Red. masses -- 25.5181 25.5181 18.9984 Frc consts -- 6.6296 6.6296 5.1594 IR Inten -- 339.7969 339.7969 0.0000 Atom AN X Y Z X Y Z X Y Z 1 54 0.07 0.21 -0.10 -0.14 0.12 0.16 0.00 0.00 0.00 2 9 -0.02 -0.07 0.28 0.05 -0.04 -0.44 0.00 0.00 0.41 3 9 -0.02 -0.07 0.28 0.05 -0.04 -0.44 0.00 0.00 -0.41 4 9 -0.02 -0.59 0.03 0.05 -0.33 -0.05 0.00 0.41 0.00 5 9 -0.18 -0.07 0.03 0.39 -0.04 -0.05 0.41 0.00 0.00 6 9 -0.02 -0.59 0.03 0.05 -0.33 -0.05 0.00 -0.41 0.00 7 9 -0.18 -0.07 0.03 0.39 -0.04 -0.05 -0.41 0.00 0.00 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 54 and mass 131.90420 Atom 2 has atomic number 9 and mass 18.99840 Atom 3 has atomic number 9 and mass 18.99840 Atom 4 has atomic number 9 and mass 18.99840 Atom 5 has atomic number 9 and mass 18.99840 Atom 6 has atomic number 9 and mass 18.99840 Atom 7 has atomic number 9 and mass 18.99840 Molecular mass: 245.89462 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 1002.684839 1002.684839 1002.684839 X -0.578743 0.815510 0.000000 Y 0.815510 0.578743 0.000000 Z 0.000000 0.000000 1.000000 This molecule is a spherical top. Rotational symmetry number 24. Warning -- assumption of classical behavior for rotation may cause significant error Rotational temperatures (Kelvin) 0.08638 0.08638 0.08638 Rotational constants (GHZ): 1.79991 1.79991 1.79991 Zero-point vibrational energy 31902.9 (Joules/Mol) 7.62498 (Kcal/Mol) Warning -- explicit consideration of 11 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 145.78 145.78 145.78 220.51 220.51 (Kelvin) 220.51 331.46 331.46 331.46 868.90 868.90 955.41 955.41 955.41 976.81 Zero-point correction= 0.012151 (Hartree/Particle) Thermal correction to Energy= 0.021458 Thermal correction to Enthalpy= 0.022402 Thermal correction to Gibbs Free Energy= -0.020629 Sum of electronic and zero-point Energies= -7827.175364 Sum of electronic and thermal Energies= -7827.166057 Sum of electronic and thermal Enthalpies= -7827.165113 Sum of electronic and thermal Free Energies= -7827.208144 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 13.465 28.503 90.567 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 42.400 Rotational 0.889 2.981 22.086 Vibrational 11.688 22.541 26.081 Vibration 1 0.604 1.948 3.429 Vibration 2 0.604 1.948 3.429 Vibration 3 0.604 1.948 3.429 Vibration 4 0.619 1.899 2.631 Vibration 5 0.619 1.899 2.631 Vibration 6 0.619 1.899 2.631 Vibration 7 0.652 1.795 1.876 Vibration 8 0.652 1.795 1.876 Vibration 9 0.652 1.795 1.876 Vibration 10 0.962 1.023 0.443 Vibration 11 0.962 1.023 0.443 Q Log10(Q) Ln(Q) Total Bot 0.308183D+10 9.488809 21.848791 Total V=0 0.119662D+16 15.077955 34.718274 Vib (Bot) 0.135784D-02 -2.867151 -6.601860 Vib (Bot) 1 0.202496D+01 0.306416 0.705548 Vib (Bot) 2 0.202496D+01 0.306416 0.705548 Vib (Bot) 3 0.202496D+01 0.306415 0.705548 Vib (Bot) 4 0.132176D+01 0.121153 0.278965 Vib (Bot) 5 0.132176D+01 0.121153 0.278965 Vib (Bot) 6 0.132176D+01 0.121153 0.278965 Vib (Bot) 7 0.854813D+00 -0.068129 -0.156873 Vib (Bot) 8 0.854813D+00 -0.068129 -0.156873 Vib (Bot) 9 0.854813D+00 -0.068129 -0.156873 Vib (Bot) 10 0.246255D+00 -0.608615 -1.401389 Vib (Bot) 11 0.246255D+00 -0.608615 -1.401389 Vib (V=0) 0.527223D+03 2.721994 6.267623 Vib (V=0) 1 0.258577D+01 0.412590 0.950024 Vib (V=0) 2 0.258577D+01 0.412590 0.950024 Vib (V=0) 3 0.258577D+01 0.412590 0.950024 Vib (V=0) 4 0.191317D+01 0.281754 0.648762 Vib (V=0) 5 0.191317D+01 0.281754 0.648762 Vib (V=0) 6 0.191317D+01 0.281754 0.648762 Vib (V=0) 7 0.149031D+01 0.173275 0.398981 Vib (V=0) 8 0.149031D+01 0.173275 0.398981 Vib (V=0) 9 0.149031D+01 0.173275 0.398981 Vib (V=0) 10 0.105735D+01 0.024220 0.055768 Vib (V=0) 11 0.105735D+01 0.024220 0.055768 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.151558D+09 8.180579 18.836479 Rotational 0.149755D+05 4.175382 9.614172 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 54 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 0.000001272 3 9 0.000000000 0.000000000 -0.000001272 4 9 0.000000000 0.000001272 0.000000000 5 9 0.000001272 0.000000000 0.000000000 6 9 0.000000000 -0.000001272 0.000000000 7 9 -0.000001272 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001272 RMS 0.000000680 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000001272 RMS 0.000000551 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. ITU= 0 Eigenvalues --- 0.01178 0.01266 0.01567 0.03644 0.04490 Eigenvalues --- 0.05034 0.05334 0.09290 0.12587 0.23099 Eigenvalues --- 0.23192 0.23389 0.26222 0.26222 0.33139 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000166 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.04D-11 for atom 7. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R2 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R3 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R4 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R5 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 R6 3.63240 0.00000 0.00000 0.00000 0.00000 3.63240 A1 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A3 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A4 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A6 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A9 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A10 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A11 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A12 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 A13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 A18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D1 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D2 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D3 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D4 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D5 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D6 -1.57080 0.00000 0.00000 0.00000 0.00000 -1.57080 D7 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 D8 1.57080 0.00000 0.00000 0.00000 0.00000 1.57080 Item Value Threshold Converged? Maximum Force 0.000001 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000004 0.001800 YES RMS Displacement 0.000002 0.001200 YES Predicted change in Energy=-1.465035D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9222 -DE/DX = 0.0 ! ! R2 R(1,3) 1.9222 -DE/DX = 0.0 ! ! R3 R(1,4) 1.9222 -DE/DX = 0.0 ! ! R4 R(1,5) 1.9222 -DE/DX = 0.0 ! ! R5 R(1,6) 1.9222 -DE/DX = 0.0 ! ! R6 R(1,7) 1.9222 -DE/DX = 0.0 ! ! A1 A(2,1,4) 90.0 -DE/DX = 0.0 ! ! A2 A(2,1,5) 90.0 -DE/DX = 0.0 ! ! A3 A(2,1,6) 90.0 -DE/DX = 0.0 ! ! A4 A(2,1,7) 90.0 -DE/DX = 0.0 ! ! A5 A(3,1,4) 90.0 -DE/DX = 0.0 ! ! A6 A(3,1,5) 90.0 -DE/DX = 0.0 ! ! A7 A(3,1,6) 90.0 -DE/DX = 0.0 ! ! A8 A(3,1,7) 90.0 -DE/DX = 0.0 ! ! A9 A(4,1,5) 90.0 -DE/DX = 0.0 ! ! A10 A(4,1,7) 90.0 -DE/DX = 0.0 ! ! A11 A(5,1,6) 90.0 -DE/DX = 0.0 ! ! A12 A(6,1,7) 90.0 -DE/DX = 0.0 ! ! A13 L(2,1,3,4,-1) 180.0 -DE/DX = 0.0 ! ! A14 L(4,1,6,2,-1) 180.0 -DE/DX = 0.0 ! ! A15 L(5,1,7,2,-1) 180.0 -DE/DX = 0.0 ! ! A16 L(2,1,3,4,-2) 180.0 -DE/DX = 0.0 ! ! A17 L(4,1,6,2,-2) 180.0 -DE/DX = 0.0 ! ! A18 L(5,1,7,2,-2) 180.0 -DE/DX = 0.0 ! ! D1 D(2,1,5,4) -90.0 -DE/DX = 0.0 ! ! D2 D(2,1,7,4) 90.0 -DE/DX = 0.0 ! ! D3 D(2,1,6,5) -90.0 -DE/DX = 0.0 ! ! D4 D(2,1,7,6) -90.0 -DE/DX = 0.0 ! ! D5 D(3,1,5,4) 90.0 -DE/DX = 0.0 ! ! D6 D(3,1,7,4) -90.0 -DE/DX = 0.0 ! ! D7 D(3,1,6,5) 90.0 -DE/DX = 0.0 ! ! D8 D(3,1,7,6) 90.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1\1\GINC-COMPUTE-0-2\Freq\RB3LYP\Gen\F6Xe1\BESSELMAN\12-Apr-2018\0\\#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/ChkBas Freq\\F6Xe B3LYP/ATZP\\0,1\Xe,0.,0.,0.\F,0.,0.,1.9221833397\F,0.,0.,-1.922183339 7\F,0.,1.9221833397,0.\F,1.9221833397,0.,0.\F,0.,-1.9221833397,0.\F,-1 .9221833397,0.,0.\\Version=EM64L-G09RevD.01\State=1-A1G\HF=-7827.18751 51\RMSD=3.529e-10\RMSF=6.800e-07\ZeroPoint=0.0121512\Thermal=0.021458\ Dipole=0.,0.,0.\DipoleDeriv=3.6038152,0.,0.,0.,3.6038152,0.,0.,0.,3.60 38152,-0.1355566,0.,0.,0.,-0.1355566,0.,0.,0.,-1.5307945,-0.1355566,0. ,0.,0.,-0.1355566,0.,0.,0.,-1.5307945,-0.1355566,0.,0.,0.,-1.5307945,0 .,0.,0.,-0.1355566,-1.5307945,0.,0.,0.,-0.1355566,0.,0.,0.,-0.1355566, -0.1355566,0.,0.,0.,-1.5307945,0.,0.,0.,-0.1355566,-1.5307945,0.,0.,0. ,-0.1355566,0.,0.,0.,-0.1355566\Polar=57.1608467,0.,57.1608467,0.,0.,5 7.1608467\PG=OH [O(Xe1),3C4(F1.F1)]\NImag=0\\0.66545818,0.,0.66545818, 0.,0.,0.66545818,-0.03411887,0.,0.,0.01745211,0.,-0.03411887,0.,0.,0.0 1745211,0.,0.,-0.26449138,0.,0.,0.25153487,-0.03411887,0.,0.,-0.003623 14,0.,0.,0.01745211,0.,-0.03411887,0.,0.,-0.00362314,0.,0.,0.01745211, 0.,0.,-0.26449138,0.,0.,-0.03374144,0.,0.,0.25153487,-0.03411887,0.,0. ,-0.00152953,0.,0.,-0.00152953,0.,0.,0.01745211,0.,-0.26449138,0.,0.,0 .01167449,0.01152852,0.,0.01167449,-0.01152852,0.,0.25153487,0.,0.,-0. 03411887,0.,0.00854085,0.01167449,0.,-0.00854085,0.01167449,0.,0.,0.01 745211,-0.26449138,0.,0.,0.01167449,0.,0.01152852,0.01167449,0.,-0.011 52852,0.01167449,0.01152852,0.,0.25153487,0.,-0.03411887,0.,0.,-0.0015 2953,0.,0.,-0.00152953,0.,0.00854085,0.01167449,0.,0.,0.01745211,0.,0. ,-0.03411887,0.00854085,0.,0.01167449,-0.00854085,0.,0.01167449,0.,0., -0.00152953,0.,0.,0.01745211,-0.03411887,0.,0.,-0.00152953,0.,0.,-0.00 152953,0.,0.,-0.00362314,0.,0.,0.01167449,-0.00854085,0.,0.01745211,0. ,-0.26449138,0.,0.,0.01167449,-0.01152852,0.,0.01167449,0.01152852,0., -0.03374144,0.,-0.01152852,0.01167449,0.,0.,0.25153487,0.,0.,-0.034118 87,0.,-0.00854085,0.01167449,0.,0.00854085,0.01167449,0.,0.,-0.0036231 4,0.,0.,-0.00152953,0.,0.,0.01745211,-0.26449138,0.,0.,0.01167449,0.,- 0.01152852,0.01167449,0.,0.01152852,0.01167449,-0.01152852,0.,-0.03374 144,0.,0.,0.01167449,0.01152852,0.,0.25153487,0.,-0.03411887,0.,0.,-0. 00152953,0.,0.,-0.00152953,0.,-0.00854085,0.01167449,0.,0.,-0.00362314 ,0.,0.00854085,0.01167449,0.,0.,0.01745211,0.,0.,-0.03411887,-0.008540 85,0.,0.01167449,0.00854085,0.,0.01167449,0.,0.,-0.00152953,0.,0.,-0.0 0362314,0.,0.,-0.00152953,0.,0.,0.01745211\\0.,0.,0.,0.,0.,-0.00000127 ,0.,0.,0.00000127,0.,-0.00000127,0.,-0.00000127,0.,0.,0.,0.00000127,0. ,0.00000127,0.,0.\\\@ IT IS BY LOGIC THAT WE PROVE, BUT BY INTUITION THAT WE DISCOVER. -- J.H.POINCARE (1854-1912) Job cpu time: 0 days 2 hours 18 minutes 30.4 seconds. File lengths (MBytes): RWF= 100 Int= 0 D2E= 0 Chk= 11 Scr= 1 Normal termination of Gaussian 09 at Thu Apr 12 19:17:16 2018.