Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/265107/Gau-8478.inp" -scrdir="/scratch/webmo-13362/265107/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 8479. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 29-May-2018 ****************************************** -------------------------------------------- #N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity -------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------------------- C4H6O2 Cs vinyl acetate ----------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 O 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 C 4 B4 3 A3 2 D2 0 H 5 B5 4 A4 3 D3 0 H 5 B6 4 A5 3 D4 0 H 4 B7 5 A6 6 D5 0 O 2 B8 1 A7 3 D6 0 H 1 B9 2 A8 3 D7 0 H 1 B10 2 A9 3 D8 0 H 1 B11 2 A10 3 D9 0 Variables: B1 1.50204 B2 1.36973 B3 1.38375 B4 1.32244 B5 1.08058 B6 1.08221 B7 1.08086 B8 1.20083 B9 1.08672 B10 1.09169 B11 1.09169 A1 110.23107 A2 118.11158 A3 120.08299 A4 119.50603 A5 121.86489 A6 125.34098 A7 126.11031 A8 109.44023 A9 109.90151 A10 109.90151 D1 180. D2 180. D3 180. D4 0. D5 0. D6 180. D7 180. D8 -58.9864 D9 58.9864 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.502042 3 8 0 1.285224 0.000000 1.975704 4 6 0 1.474947 0.000000 3.346387 5 6 0 2.699336 0.000000 3.846113 6 1 0 2.836706 0.000000 4.917930 7 1 0 3.575612 0.000000 3.211034 8 1 0 0.562922 0.000000 3.926439 9 8 0 -0.970128 0.000000 2.209739 10 1 0 -1.024768 0.000000 -0.361687 11 1 0 0.528893 0.879753 -0.371617 12 1 0 0.528893 -0.879753 -0.371617 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.502042 0.000000 3 O 2.356948 1.369728 0.000000 4 C 3.657017 2.361584 1.383752 0.000000 5 C 4.698829 3.575064 2.344812 1.322443 0.000000 6 H 5.677406 4.440179 3.326228 2.079456 1.080585 7 H 4.805803 3.963036 2.602291 2.105022 1.082214 8 H 3.966586 2.488892 2.080165 1.080856 2.137923 9 O 2.413316 1.200826 2.267462 2.696360 4.017796 10 H 1.086723 2.126884 3.286252 4.471955 5.619121 11 H 1.091693 2.136420 2.618380 3.936056 4.824317 12 H 1.091693 2.136420 2.618380 3.936056 4.824317 6 7 8 9 10 6 H 0.000000 7 H 1.859967 0.000000 8 H 2.480554 3.096467 0.000000 9 O 4.671861 4.654712 2.301587 0.000000 10 H 6.541050 5.824760 4.572612 2.572006 0.000000 11 H 5.837746 4.784542 4.387301 3.111981 1.785477 12 H 5.837746 4.784542 4.387301 3.111981 1.785477 11 12 11 H 0.000000 12 H 1.759506 0.000000 Stoichiometry C4H6O2 Framework group CS[SG(C4H4O2),X(H2)] Deg. of freedom 20 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -2.215802 -0.255493 0.000000 2 6 0 -0.752941 -0.596327 0.000000 3 8 0 0.000000 0.547891 0.000000 4 6 0 1.377980 0.421638 0.000000 5 6 0 2.142501 1.500694 0.000000 6 1 0 3.217531 1.391271 0.000000 7 1 0 1.722827 2.498221 0.000000 8 1 0 1.735950 -0.598218 0.000000 9 8 0 -0.283840 -1.701735 0.000000 10 1 0 -2.800588 -1.171457 0.000000 11 1 0 -2.457712 0.343930 0.879753 12 1 0 -2.457712 0.343930 -0.879753 --------------------------------------------------------------------- Rotational constants (GHZ): 9.4211509 2.2327490 1.8253212 Standard basis: 6-311+G(2d,p) (5D, 7F) There are 152 symmetry adapted cartesian basis functions of A' symmetry. There are 58 symmetry adapted cartesian basis functions of A" symmetry. There are 140 symmetry adapted basis functions of A' symmetry. There are 58 symmetry adapted basis functions of A" symmetry. 198 basis functions, 300 primitive gaussians, 210 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 226.1358151946 Hartrees. NAtoms= 12 NActive= 12 NUniq= 11 SFac= 1.19D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 198 RedAO= T EigKep= 2.77D-05 NBF= 140 58 NBsUse= 198 1.00D-06 EigRej= -1.00D+00 NBFU= 140 58 ExpMin= 4.38D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") Virtual (A") (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -306.574920611 A.U. after 13 cycles NFock= 13 Conv=0.25D-08 -V/T= 2.0038 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 198 NBasis= 198 NAE= 23 NBE= 23 NFC= 0 NFV= 0 NROrb= 198 NOA= 23 NOB= 23 NVA= 175 NVB= 175 **** Warning!!: The largest alpha MO coefficient is 0.91689474D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=F BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 6100 IOpCl= 0 I1Cent= 7 NGrid= 12 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Symmetry not used in FoFCou. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 1.34D-13 3.33D-08 XBig12= 8.57D+00 8.19D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.34D-13 3.33D-08 XBig12= 3.48D-02 9.58D-02. 3 vectors produced by pass 2 Test12= 1.34D-13 3.33D-08 XBig12= 1.48D-04 4.08D-03. 3 vectors produced by pass 3 Test12= 1.34D-13 3.33D-08 XBig12= 3.79D-07 1.87D-04. 3 vectors produced by pass 4 Test12= 1.34D-13 3.33D-08 XBig12= 9.15D-10 1.19D-05. 3 vectors produced by pass 5 Test12= 1.34D-13 3.33D-08 XBig12= 2.57D-12 6.08D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 18 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 161.9562 Anisotropy = 44.4230 XX= 191.5689 YX= 5.4503 ZX= 0.0000 XY= -4.8205 YY= 154.1358 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 140.1641 Eigenvalues: 140.1641 154.1331 191.5715 2 C Isotropic = 10.2031 Anisotropy = 81.8931 XX= -53.9815 YX= -51.5987 ZX= 0.0000 XY= -90.0410 YY= 19.7923 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 64.7985 Eigenvalues: -96.9451 62.7559 64.7985 3 O Isotropic = 62.5841 Anisotropy = 187.5080 XX= 20.3559 YX= 48.5721 ZX= 0.0000 XY= 165.9311 YY= -20.1931 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 187.5894 Eigenvalues: -109.0697 109.2325 187.5894 4 C Isotropic = 34.2082 Anisotropy = 130.2637 XX= -29.2133 YX= 68.6226 ZX= 0.0000 XY= 65.4077 YY= 10.7871 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 121.0506 Eigenvalues: -79.1491 60.7229 121.0506 5 C Isotropic = 85.6130 Anisotropy = 119.0939 XX= 9.2695 YX= 52.8896 ZX= 0.0000 XY= 45.5110 YY= 82.5605 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 165.0089 Eigenvalues: -15.4329 107.2629 165.0089 6 H Isotropic = 27.4350 Anisotropy = 3.9569 XX= 27.8975 YX= 1.8604 ZX= 0.0000 XY= 2.2716 YY= 28.1109 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.2966 Eigenvalues: 25.9354 26.2966 30.0729 7 H Isotropic = 26.9581 Anisotropy = 5.0499 XX= 26.2742 YX= 4.1403 ZX= 0.0000 XY= 0.8983 YY= 28.7578 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.8423 Eigenvalues: 24.7073 25.8423 30.3247 8 H Isotropic = 23.9370 Anisotropy = 7.3399 XX= 26.5706 YX= 3.6378 ZX= 0.0000 XY= 3.0181 YY= 23.9291 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 21.3114 Eigenvalues: 21.3114 21.6694 28.8303 9 O Isotropic = -99.7104 Anisotropy = 593.5335 XX= -217.1883 YX= -49.5497 ZX= 0.0000 XY= -8.4415 YY= -377.9215 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 295.9786 Eigenvalues: -382.9922 -212.1176 295.9786 10 H Isotropic = 30.1536 Anisotropy = 7.1765 XX= 32.2416 YX= 4.7781 ZX= 0.0000 XY= 1.0501 YY= 31.7884 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.4306 Eigenvalues: 26.4306 29.0922 34.9379 11 H Isotropic = 29.7949 Anisotropy = 6.0759 XX= 30.1599 YX= -1.4047 ZX= -2.4152 XY= -0.3336 YY= 29.1870 ZY= 2.8240 XZ= -2.0330 YZ= 2.7544 ZZ= 30.0377 Eigenvalues: 26.5625 28.9766 33.8455 12 H Isotropic = 29.7949 Anisotropy = 6.0759 XX= 30.1599 YX= -1.4047 ZX= 2.4152 XY= -0.3336 YY= 29.1870 ZY= -2.8240 XZ= 2.0330 YZ= -2.7544 ZZ= 30.0377 Eigenvalues: 26.5625 28.9766 33.8455 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") Virtual (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A") (A') (A') (A') (A") (A") (A') (A") (A') (A') (A") (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A") (A") (A') (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -19.19094 -19.12776 -10.31848 -10.23829 -10.19140 Alpha occ. eigenvalues -- -10.17317 -1.12895 -1.04505 -0.80315 -0.75364 Alpha occ. eigenvalues -- -0.64163 -0.57355 -0.51405 -0.49192 -0.49150 Alpha occ. eigenvalues -- -0.44813 -0.42856 -0.41930 -0.41863 -0.37324 Alpha occ. eigenvalues -- -0.36584 -0.29803 -0.26433 Alpha virt. eigenvalues -- -0.02898 0.00202 0.01372 0.02221 0.03418 Alpha virt. eigenvalues -- 0.04443 0.04535 0.05195 0.07126 0.07127 Alpha virt. eigenvalues -- 0.08413 0.09996 0.10960 0.11589 0.12983 Alpha virt. eigenvalues -- 0.13078 0.14279 0.15582 0.16744 0.17971 Alpha virt. eigenvalues -- 0.19785 0.20051 0.21446 0.22264 0.22742 Alpha virt. eigenvalues -- 0.22848 0.24992 0.26680 0.27846 0.29893 Alpha virt. eigenvalues -- 0.30016 0.30522 0.32437 0.34030 0.37961 Alpha virt. eigenvalues -- 0.40122 0.40496 0.44267 0.45239 0.46869 Alpha virt. eigenvalues -- 0.48791 0.50031 0.50333 0.53191 0.55277 Alpha virt. eigenvalues -- 0.57354 0.59909 0.61001 0.61415 0.64109 Alpha virt. eigenvalues -- 0.65107 0.66265 0.66827 0.67843 0.70437 Alpha virt. eigenvalues -- 0.73048 0.74377 0.76964 0.79850 0.81101 Alpha virt. eigenvalues -- 0.84066 0.84866 0.87152 0.87292 0.93774 Alpha virt. eigenvalues -- 0.97471 0.99056 1.00006 1.06184 1.06863 Alpha virt. eigenvalues -- 1.07382 1.10662 1.13764 1.16953 1.17166 Alpha virt. eigenvalues -- 1.18716 1.20194 1.21650 1.26239 1.32318 Alpha virt. eigenvalues -- 1.33375 1.38779 1.43128 1.45271 1.48299 Alpha virt. eigenvalues -- 1.52980 1.60491 1.62280 1.64994 1.67173 Alpha virt. eigenvalues -- 1.70319 1.70790 1.72383 1.79012 1.84260 Alpha virt. eigenvalues -- 1.90851 1.94185 1.99116 2.01088 2.01482 Alpha virt. eigenvalues -- 2.11226 2.12313 2.20178 2.22033 2.22787 Alpha virt. eigenvalues -- 2.31062 2.32261 2.35689 2.35711 2.37611 Alpha virt. eigenvalues -- 2.45614 2.53756 2.55521 2.58210 2.61399 Alpha virt. eigenvalues -- 2.65045 2.70441 2.71910 2.75152 2.78882 Alpha virt. eigenvalues -- 2.82851 2.84243 2.87618 3.03317 3.04241 Alpha virt. eigenvalues -- 3.08309 3.18178 3.19196 3.23389 3.24705 Alpha virt. eigenvalues -- 3.29272 3.29329 3.34834 3.36152 3.38301 Alpha virt. eigenvalues -- 3.41102 3.44930 3.46494 3.47347 3.52102 Alpha virt. eigenvalues -- 3.62721 3.67004 3.67310 3.70179 3.73854 Alpha virt. eigenvalues -- 3.86608 3.91933 4.00749 4.18510 4.18713 Alpha virt. eigenvalues -- 4.25876 4.37830 4.82259 4.96596 5.04401 Alpha virt. eigenvalues -- 5.24847 5.38398 5.84279 6.09732 6.75433 Alpha virt. eigenvalues -- 6.86040 6.88234 6.96086 7.01994 7.09473 Alpha virt. eigenvalues -- 7.20306 7.23802 7.46567 7.48192 23.81340 Alpha virt. eigenvalues -- 23.97180 24.09266 24.15238 49.97044 49.99092 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.401078 0.005848 -0.110735 -0.083788 0.004706 0.000414 2 C 0.005848 4.959009 0.206047 -0.081593 0.003643 0.000964 3 O -0.110735 0.206047 8.296003 0.165544 -0.056390 0.008372 4 C -0.083788 -0.081593 0.165544 4.879586 0.535363 -0.035740 5 C 0.004706 0.003643 -0.056390 0.535363 5.109981 0.399613 6 H 0.000414 0.000964 0.008372 -0.035740 0.399613 0.566528 7 H -0.000349 0.002614 -0.003465 -0.014839 0.388296 -0.035421 8 H 0.002663 0.010470 -0.060658 0.424239 -0.048327 -0.006440 9 O 0.023246 0.389477 -0.073668 -0.043173 0.022995 0.000487 10 H 0.480587 -0.098928 0.007112 -0.003415 -0.000505 -0.000001 11 H 0.381435 -0.016192 0.000754 0.000457 0.001267 -0.000002 12 H 0.381435 -0.016192 0.000754 0.000457 0.001267 -0.000002 7 8 9 10 11 12 1 C -0.000349 0.002663 0.023246 0.480587 0.381435 0.381435 2 C 0.002614 0.010470 0.389477 -0.098928 -0.016192 -0.016192 3 O -0.003465 -0.060658 -0.073668 0.007112 0.000754 0.000754 4 C -0.014839 0.424239 -0.043173 -0.003415 0.000457 0.000457 5 C 0.388296 -0.048327 0.022995 -0.000505 0.001267 0.001267 6 H -0.035421 -0.006440 0.000487 -0.000001 -0.000002 -0.000002 7 H 0.557261 0.005970 -0.000319 0.000003 0.000004 0.000004 8 H 0.005970 0.533232 -0.004353 0.000093 -0.000050 -0.000050 9 O -0.000319 -0.004353 8.134296 0.001510 0.000166 0.000166 10 H 0.000003 0.000093 0.001510 0.512126 -0.024321 -0.024321 11 H 0.000004 -0.000050 0.000166 -0.024321 0.535769 -0.025524 12 H 0.000004 -0.000050 0.000166 -0.024321 -0.025524 0.535769 Mulliken charges: 1 1 C -0.486539 2 C 0.634833 3 O -0.379670 4 C 0.256902 5 C -0.361909 6 H 0.101228 7 H 0.100240 8 H 0.143211 9 O -0.450829 10 H 0.150059 11 H 0.146237 12 H 0.146237 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.044006 2 C 0.634833 3 O -0.379670 4 C 0.400113 5 C -0.160442 9 O -0.450829 Electronic spatial extent (au): = 661.1102 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.8664 Y= 1.6348 Z= 0.0000 Tot= 1.8502 Quadrupole moment (field-independent basis, Debye-Ang): XX= -28.9998 YY= -40.1784 ZZ= -36.8162 XY= 0.5339 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 6.3317 YY= -4.8469 ZZ= -1.4848 XY= 0.5339 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -3.4251 YYY= 10.5213 ZZZ= 0.0000 XYY= 2.3439 XXY= -1.4983 XXZ= 0.0000 XZZ= -6.1953 YZZ= -3.1057 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -521.6040 YYYY= -285.1108 ZZZZ= -45.4706 XXXY= -91.6840 XXXZ= 0.0000 YYYX= -99.3441 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -132.5307 XXZZ= -108.4187 YYZZ= -57.1297 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -40.7514 N-N= 2.261358151946D+02 E-N=-1.169508689899D+03 KE= 3.054072813436D+02 Symmetry A' KE= 2.928571287673D+02 Symmetry A" KE= 1.255015257629D+01 1\1\GINC-COMPUTE-0-3\SP\RB3LYP\6-311+G(2d,p)\C4H6O2\BESSELMAN\29-May-2 018\0\\#N B3LYP/6-311+G(2d,p) NMR Geom=Connectivity\\C4H6O2 Cs vinyl a cetate\\0,1\C\C,1,1.502041984\O,2,1.369728068,1,110.2310684\C,3,1.3837 51676,2,118.1115818,1,180.,0\C,4,1.322442517,3,120.0829926,2,180.,0\H, 5,1.080584515,4,119.5060271,3,180.,0\H,5,1.082213649,4,121.8648884,3,0 .,0\H,4,1.080855579,5,125.3409804,6,0.,0\O,2,1.200825797,1,126.1103075 ,3,180.,0\H,1,1.086722847,2,109.4402294,3,180.,0\H,1,1.091692504,2,109 .9015093,3,-58.98639549,0\H,1,1.091692504,2,109.9015093,3,58.98639549, 0\\Version=EM64L-G09RevD.01\State=1-A'\HF=-306.5749206\RMSD=2.481e-09\ Dipole=0.5490526,0.,-0.4779028\Quadrupole=-3.0001827,-1.1038925,4.1040 752,0.,2.1927748,0.\PG=CS [SG(C4H4O2),X(H2)]\\@ IN THE LONG RUN, DIGGING FOR TRUTH HAS ALWAYS PROVED NOT ONLY MORE INTERESTING BUT MORE PROFITABLE THAN DIGGING FOR GOLD. -- GEORGE R. HARRISON Job cpu time: 0 days 0 hours 2 minutes 39.7 seconds. File lengths (MBytes): RWF= 25 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Tue May 29 10:53:35 2018.