Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324246/Gau-7090.inp" -scrdir="/scratch/webmo-13362/324246/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 7091. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------- Butanol ------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 H 4 B4 3 A3 2 D2 0 H 4 B5 3 A4 2 D3 0 H 4 B6 3 A5 2 D4 0 H 3 B7 2 A6 1 D5 0 H 3 B8 2 A7 1 D6 0 H 2 B9 1 A8 3 D7 0 H 2 B10 1 A9 3 D8 0 O 1 B11 2 A10 3 D9 0 H 12 B12 1 A11 2 D10 0 H 1 B13 2 A12 3 D11 0 H 1 B14 2 A13 3 D12 0 Variables: B1 1.52954 B2 1.53415 B3 1.53214 B4 1.09587 B5 1.09693 B6 1.09673 B7 1.09912 B8 1.09939 B9 1.10173 B10 1.09816 B11 1.42376 B12 0.96985 B13 1.09572 B14 1.10351 A1 113.26503 A2 113.10394 A3 111.36061 A4 111.178 A5 111.14748 A6 109.19918 A7 109.40728 A8 108.99685 A9 108.46437 A10 113.07682 A11 107.33355 A12 110.1025 A13 109.98202 D1 179.54938 D2 179.92471 D3 -59.96354 D4 59.79916 D5 -58.37972 D6 57.29226 D7 121.87618 D8 -122.64559 D9 177.25824 D10 61.45802 D11 59.74557 D12 -57.911 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.529541 3 6 0 1.409403 0.000000 2.135506 4 6 0 1.405112 0.011083 3.667597 5 1 0 2.424572 0.009480 4.069631 6 1 0 0.894773 0.900985 4.056025 7 1 0 0.886726 -0.868472 4.068187 8 1 0 1.956414 -0.883889 1.778319 9 1 0 1.966317 0.872505 1.765051 10 1 0 -0.550121 0.884625 1.888172 11 1 0 -0.561895 -0.877072 1.877343 12 8 0 -1.308329 -0.062655 -0.558063 13 1 0 -1.785947 0.728697 -0.264365 14 1 0 0.518436 -0.888819 -0.376600 15 1 0 0.550932 0.878635 -0.377096 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.529541 0.000000 3 C 2.558672 1.534148 0.000000 4 C 3.927560 2.558466 1.532137 0.000000 5 H 4.737144 3.511509 2.184376 1.095870 0.000000 6 H 4.250145 2.827634 2.182891 1.096927 1.770664 7 H 4.253313 2.825819 2.182359 1.096729 1.770811 8 H 2.787693 2.161181 1.099119 2.162008 2.503476 9 H 2.782637 2.164054 1.099388 2.162563 2.503178 10 H 2.156476 1.101731 2.164132 2.784307 3.791232 11 H 2.146951 1.098157 2.172997 2.804095 3.809342 12 O 1.423757 2.464495 3.826918 5.022390 5.946032 13 H 1.946919 2.634142 4.062098 5.114504 6.085168 14 H 1.095721 2.166137 2.809715 4.236927 4.920291 15 H 1.103506 2.170435 2.796809 4.223957 4.902993 6 7 8 9 10 6 H 0.000000 7 H 1.769518 0.000000 8 H 3.082337 2.527442 0.000000 9 H 2.529344 3.082362 1.756472 0.000000 10 H 2.605297 3.144892 3.069597 2.519477 0.000000 11 H 3.167021 2.626475 2.520264 3.076602 1.761770 12 O 5.203082 5.183608 4.097761 4.122461 2.730620 13 H 5.087407 5.335273 4.558317 4.268336 2.486965 14 H 4.795122 4.460065 2.590652 3.128145 3.068568 15 H 4.446492 4.788077 3.118924 2.567517 2.518688 11 12 13 14 15 11 H 0.000000 12 O 2.674255 0.000000 13 H 2.943419 0.969854 0.000000 14 H 2.499503 2.013094 2.817648 0.000000 15 H 3.066494 2.091799 2.344396 1.767753 0.000000 Stoichiometry C4H10O Framework group C1[X(C4H10O)] Deg. of freedom 39 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.326556 0.489651 0.019104 2 6 0 -0.038521 -0.333914 -0.027814 3 6 0 1.231869 0.524453 0.026269 4 6 0 2.519716 -0.304756 -0.009885 5 1 0 3.408078 0.335753 0.028747 6 1 0 2.569821 -0.996218 0.840185 7 1 0 2.579226 -0.903427 -0.926873 8 1 0 1.227838 1.229555 -0.816866 9 1 0 1.218528 1.139704 0.937281 10 1 0 -0.034952 -1.042452 0.815852 11 1 0 -0.046933 -0.940881 -0.942947 12 8 0 -2.501973 -0.305796 -0.093779 13 1 0 -2.513799 -0.912838 0.662512 14 1 0 -1.362336 1.181485 -0.829831 15 1 0 -1.348728 1.103082 0.936130 --------------------------------------------------------------------- Rotational constants (GHZ): 18.5715966 1.9417993 1.8460187 Standard basis: 6-31G(d) (6D, 7F) There are 95 symmetry adapted cartesian basis functions of A symmetry. There are 95 symmetry adapted basis functions of A symmetry. 95 basis functions, 180 primitive gaussians, 95 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 184.1370505052 Hartrees. NAtoms= 15 NActive= 15 NUniq= 15 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 95 RedAO= T EigKep= 3.82D-03 NBF= 95 NBsUse= 95 1.00D-06 EigRej= -1.00D+00 NBFU= 95 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=11361312. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -233.661726719 A.U. after 13 cycles NFock= 13 Conv=0.34D-08 -V/T= 2.0096 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 95 NBasis= 95 NAE= 21 NBE= 21 NFC= 0 NFV= 0 NROrb= 95 NOA= 21 NOB= 21 NVA= 74 NVB= 74 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in canonical form, NReq=12443199. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 5.18D-14 3.33D-08 XBig12= 4.46D+00 4.36D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 5.18D-14 3.33D-08 XBig12= 3.80D-03 1.74D-02. 3 vectors produced by pass 2 Test12= 5.18D-14 3.33D-08 XBig12= 5.40D-06 1.30D-03. 3 vectors produced by pass 3 Test12= 5.18D-14 3.33D-08 XBig12= 1.05D-08 2.90D-05. 3 vectors produced by pass 4 Test12= 5.18D-14 3.33D-08 XBig12= 1.84D-11 1.00D-06. 1 vectors produced by pass 5 Test12= 5.18D-14 3.33D-08 XBig12= 1.93D-14 3.46D-08. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 16 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 126.0885 Anisotropy = 59.4890 XX= 153.7339 YX= 25.5907 ZX= -0.3115 XY= 16.0636 YY= 129.4629 ZY= 4.5174 XZ= -1.3813 YZ= 5.5307 ZZ= 95.0686 Eigenvalues: 94.0512 118.4664 165.7478 2 C Isotropic = 151.1330 Anisotropy = 36.0283 XX= 175.1324 YX= 1.7834 ZX= -1.2030 XY= -0.7585 YY= 150.3884 ZY= 0.2346 XZ= -0.1061 YZ= 0.2253 ZZ= 127.8783 Eigenvalues: 127.8667 150.3805 175.1519 3 C Isotropic = 168.3153 Anisotropy = 12.1890 XX= 175.9757 YX= -0.5845 ZX= 0.0015 XY= 4.3323 YY= 168.8497 ZY= 0.0483 XZ= 0.4709 YZ= -0.1434 ZZ= 160.1205 Eigenvalues: 160.1163 168.3882 176.4413 4 C Isotropic = 173.6634 Anisotropy = 23.3316 XX= 185.7662 YX= -5.0110 ZX= -0.2364 XY= -10.5542 YY= 171.6340 ZY= 0.0202 XZ= -0.6049 YZ= 0.0106 ZZ= 163.5902 Eigenvalues: 163.5789 168.1935 189.2179 5 H Isotropic = 31.0491 Anisotropy = 9.5384 XX= 36.6702 YX= 3.0397 ZX= 0.1636 XY= 1.7747 YY= 29.5178 ZY= 0.1252 XZ= 0.1383 YZ= 0.1253 ZZ= 26.9593 Eigenvalues: 26.9530 28.7862 37.4080 6 H Isotropic = 31.2940 Anisotropy = 7.8377 XX= 30.8622 YX= -2.6382 ZX= 1.8185 XY= -1.7765 YY= 31.2273 ZY= -4.0876 XZ= 1.3554 YZ= -3.3845 ZZ= 31.7925 Eigenvalues: 27.6363 29.7266 36.5191 7 H Isotropic = 31.2122 Anisotropy = 7.8799 XX= 30.8149 YX= -2.4582 ZX= -2.2241 XY= -1.6850 YY= 30.3571 ZY= 3.9342 XZ= -1.5395 YZ= 3.1826 ZZ= 32.4646 Eigenvalues: 27.5726 29.5985 36.4655 8 H Isotropic = 30.8950 Anisotropy = 7.1726 XX= 30.8022 YX= -0.0023 ZX= -0.4804 XY= 0.0857 YY= 31.8366 ZY= -5.0276 XZ= -0.4564 YZ= -4.2265 ZZ= 30.0461 Eigenvalues: 26.2040 30.8042 35.6767 9 H Isotropic = 30.9160 Anisotropy = 6.8766 XX= 30.9024 YX= -0.1148 ZX= 0.3565 XY= -0.0133 YY= 30.9151 ZY= 4.9271 XZ= 0.4849 YZ= 4.2003 ZZ= 30.9304 Eigenvalues: 26.3333 30.9142 35.5004 10 H Isotropic = 30.9515 Anisotropy = 4.2792 XX= 31.5831 YX= 0.3700 ZX= -0.5522 XY= 0.6273 YY= 30.8655 ZY= -3.5038 XZ= -0.3408 YZ= -2.4122 ZZ= 30.4060 Eigenvalues: 27.6688 31.3814 33.8043 11 H Isotropic = 30.3894 Anisotropy = 4.5023 XX= 30.7758 YX= 0.1533 ZX= 0.1662 XY= 0.5420 YY= 29.4993 ZY= 3.6715 XZ= 0.3639 YZ= 2.4230 ZZ= 30.8932 Eigenvalues: 27.0672 30.7101 33.3910 12 O Isotropic = 282.9932 Anisotropy = 63.4568 XX= 274.1362 YX= -12.7073 ZX= 2.6706 XY= 7.1443 YY= 288.3534 ZY= -27.8577 XZ= -10.3112 YZ= -47.8533 ZZ= 286.4901 Eigenvalues: 248.6948 274.9872 325.2977 13 H Isotropic = 32.5527 Anisotropy = 14.4538 XX= 30.9134 YX= 4.0328 ZX= -0.7628 XY= 3.5052 YY= 32.5528 ZY= -8.3021 XZ= -1.1563 YZ= -7.3408 ZZ= 34.1920 Eigenvalues: 24.6769 30.7927 42.1886 14 H Isotropic = 28.6040 Anisotropy = 4.2527 XX= 29.9865 YX= 1.0779 ZX= -0.3248 XY= 0.0933 YY= 29.5718 ZY= -3.7001 XZ= 1.5985 YZ= -2.4715 ZZ= 26.2539 Eigenvalues: 24.2834 30.0895 31.4392 15 H Isotropic = 28.4937 Anisotropy = 4.7414 XX= 30.0101 YX= 1.5549 ZX= 0.1520 XY= 0.3816 YY= 28.8663 ZY= 4.1902 XZ= -1.4089 YZ= 3.0827 ZZ= 26.6046 Eigenvalues: 23.7405 30.0859 31.6546 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.13751 -10.22486 -10.18478 -10.17993 -10.17591 Alpha occ. eigenvalues -- -1.00903 -0.79121 -0.71431 -0.62838 -0.58429 Alpha occ. eigenvalues -- -0.50053 -0.46532 -0.43584 -0.42575 -0.38634 Alpha occ. eigenvalues -- -0.37905 -0.35981 -0.33714 -0.33035 -0.31444 Alpha occ. eigenvalues -- -0.25998 Alpha virt. eigenvalues -- 0.07727 0.09294 0.12538 0.12954 0.14266 Alpha virt. eigenvalues -- 0.16649 0.17931 0.18745 0.19246 0.20027 Alpha virt. eigenvalues -- 0.21509 0.24838 0.26660 0.27716 0.51197 Alpha virt. eigenvalues -- 0.51526 0.54828 0.54918 0.57507 0.61187 Alpha virt. eigenvalues -- 0.63989 0.67391 0.69748 0.72386 0.79484 Alpha virt. eigenvalues -- 0.80268 0.81837 0.85387 0.87081 0.89275 Alpha virt. eigenvalues -- 0.90710 0.91363 0.92631 0.94183 0.96688 Alpha virt. eigenvalues -- 0.97515 0.99030 1.04884 1.06561 1.20481 Alpha virt. eigenvalues -- 1.33212 1.39457 1.44203 1.46990 1.51714 Alpha virt. eigenvalues -- 1.58256 1.67879 1.76478 1.78368 1.83859 Alpha virt. eigenvalues -- 1.90918 1.91772 1.94910 2.00147 2.01934 Alpha virt. eigenvalues -- 2.04129 2.12838 2.17684 2.24383 2.28704 Alpha virt. eigenvalues -- 2.31319 2.37112 2.42150 2.46104 2.50743 Alpha virt. eigenvalues -- 2.56190 2.65869 2.78754 2.87838 3.76201 Alpha virt. eigenvalues -- 4.13479 4.25667 4.37098 4.51397 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.794263 0.369164 -0.029926 0.002870 -0.000099 0.000020 2 C 0.369164 5.101851 0.338036 -0.036385 0.003710 -0.004812 3 C -0.029926 0.338036 4.985697 0.368511 -0.027509 -0.034905 4 C 0.002870 -0.036385 0.368511 5.060344 0.372143 0.378014 5 H -0.000099 0.003710 -0.027509 0.372143 0.575151 -0.031053 6 H 0.000020 -0.004812 -0.034905 0.378014 -0.031053 0.578131 7 H 0.000018 -0.004144 -0.035004 0.378613 -0.030962 -0.032584 8 H -0.003654 -0.041469 0.379388 -0.038310 -0.002619 0.005182 9 H -0.003597 -0.041484 0.377316 -0.038493 -0.002660 -0.004472 10 H -0.038699 0.364338 -0.036509 -0.003743 -0.000011 0.004828 11 H -0.036109 0.366338 -0.033079 -0.003203 -0.000008 -0.000355 12 O 0.263615 -0.043094 0.003117 -0.000049 0.000000 0.000000 13 H -0.032651 -0.004718 -0.000050 -0.000002 0.000000 0.000000 14 H 0.379806 -0.040348 -0.002111 -0.000106 0.000004 0.000006 15 H 0.360959 -0.056429 0.001604 -0.000111 0.000007 0.000004 7 8 9 10 11 12 1 C 0.000018 -0.003654 -0.003597 -0.038699 -0.036109 0.263615 2 C -0.004144 -0.041469 -0.041484 0.364338 0.366338 -0.043094 3 C -0.035004 0.379388 0.377316 -0.036509 -0.033079 0.003117 4 C 0.378613 -0.038310 -0.038493 -0.003743 -0.003203 -0.000049 5 H -0.030962 -0.002619 -0.002660 -0.000011 -0.000008 0.000000 6 H -0.032584 0.005182 -0.004472 0.004828 -0.000355 0.000000 7 H 0.574433 -0.004497 0.005211 -0.000388 0.004453 -0.000001 8 H -0.004497 0.605428 -0.040060 0.006004 -0.005482 0.000000 9 H 0.005211 -0.040060 0.610488 -0.005436 0.005734 -0.000003 10 H -0.000388 0.006004 -0.005436 0.628444 -0.041245 -0.000906 11 H 0.004453 -0.005482 0.005734 -0.041245 0.595103 0.004352 12 O -0.000001 0.000000 -0.000003 -0.000906 0.004352 8.228808 13 H 0.000001 0.000023 0.000003 0.006259 -0.000867 0.234363 14 H 0.000003 0.005060 -0.000533 0.005957 -0.007156 -0.038715 15 H 0.000005 -0.000585 0.005687 -0.007052 0.006778 -0.035854 13 14 15 1 C -0.032651 0.379806 0.360959 2 C -0.004718 -0.040348 -0.056429 3 C -0.000050 -0.002111 0.001604 4 C -0.000002 -0.000106 -0.000111 5 H 0.000000 0.000004 0.000007 6 H 0.000000 0.000006 0.000004 7 H 0.000001 0.000003 0.000005 8 H 0.000023 0.005060 -0.000585 9 H 0.000003 -0.000533 0.005687 10 H 0.006259 0.005957 -0.007052 11 H -0.000867 -0.007156 0.006778 12 O 0.234363 -0.038715 -0.035854 13 H 0.411126 0.007885 -0.006100 14 H 0.007885 0.592675 -0.046927 15 H -0.006100 -0.046927 0.661950 Mulliken charges: 1 1 C -0.025981 2 C -0.270554 3 C -0.254575 4 C -0.440094 5 H 0.143906 6 H 0.141997 7 H 0.144844 8 H 0.135593 9 H 0.132301 10 H 0.118160 11 H 0.144744 12 O -0.615634 13 H 0.384729 14 H 0.144501 15 H 0.116064 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.234584 2 C -0.007650 3 C 0.013319 4 C -0.009348 12 O -0.230905 Electronic spatial extent (au): = 674.5617 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.2456 Y= -0.1998 Z= 1.1657 Tot= 1.7176 Quadrupole moment (field-independent basis, Debye-Ang): XX= -38.1882 YY= -31.9397 ZZ= -31.8180 XY= 1.2482 XZ= -3.4015 YZ= -1.5289 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -4.2062 YY= 2.0423 ZZ= 2.1640 XY= 1.2482 XZ= -3.4015 YZ= -1.5289 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 4.3296 YYY= -2.5717 ZZZ= 0.3851 XYY= -6.8816 XXY= -3.3054 XXZ= 8.8770 XZZ= -5.5655 YZZ= -1.1986 YYZ= 0.9260 XYZ= 3.7534 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -750.0495 YYYY= -103.7480 ZZZZ= -60.5368 XXXY= 21.3015 XXXZ= -23.5501 YYYX= 7.7413 YYYZ= -2.4060 ZZZX= -2.3101 ZZZY= -1.2048 XXYY= -125.6285 XXZZ= -122.0463 YYZZ= -24.7480 XXYZ= -9.3954 YYXZ= -2.8334 ZZXY= 1.7942 N-N= 1.841370505052D+02 E-N=-9.115904427785D+02 KE= 2.314415435250D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C4H10O1\AVANAARTSEN\25-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\Butanol\\0,1\C\C,1,1.529 540705\C,2,1.534147851,1,113.2650271\C,3,1.532137257,2,113.1039423,1,1 79.5493782,0\H,4,1.09587009,3,111.3606106,2,179.9247053,0\H,4,1.096926 538,3,111.1780027,2,-59.96353986,0\H,4,1.09672941,3,111.1474803,2,59.7 9916081,0\H,3,1.099119372,2,109.1991818,1,-58.37972108,0\H,3,1.0993883 02,2,109.4072804,1,57.29225522,0\H,2,1.101730981,1,108.9968456,3,121.8 76182,0\H,2,1.098156687,1,108.4643656,3,-122.6455941,0\O,1,1.42375687, 2,113.0768177,3,177.2582378,0\H,12,0.969853556,1,107.3335535,2,61.4580 1866,0\H,1,1.09572065,2,110.1025035,3,59.74556657,0\H,1,1.103506173,2, 109.9820233,3,-57.91099831,0\\Version=EM64L-G09RevD.01\State=1-A\HF=-2 33.6617267\RMSD=3.443e-09\Dipole=0.2218739,0.4615574,0.4409141\Quadrup ole=0.7695549,1.7548018,-2.5243568,-2.3332785,-1.7297029,-1.5579535\PG =C01 [X(C4H10O1)]\\@ IN-LAWS ARE LIKE SEEDS. YOU DON'T NEED THEM BUT THEY COME WITH THE TOMATO. Job cpu time: 0 days 0 hours 0 minutes 21.5 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri Jan 25 10:37:01 2019.