Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324247/Gau-7143.inp" -scrdir="/scratch/webmo-13362/324247/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 7144. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; -------------- 2-chlorobutane -------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 H 4 B4 3 A3 2 D2 0 H 4 B5 3 A4 2 D3 0 H 4 B6 3 A5 2 D4 0 H 3 B7 2 A6 1 D5 0 H 3 B8 2 A7 1 D6 0 Cl 2 B9 1 A8 3 D7 0 H 2 B10 1 A9 3 D8 0 H 1 B11 2 A10 3 D9 0 H 1 B12 2 A11 3 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.54 B2 1.54 B3 1.54 B4 1.09 B5 1.09 B6 1.09 B7 1.09 B8 1.09 B9 1.76 B10 1.09 B11 1.09 B12 1.09 B13 1.09 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 A7 109.47122 A8 109.47122 A9 109.47122 A10 109.47122 A11 109.47122 A12 109.47122 D1 180. D2 180. D3 -60. D4 60. D5 -60. D6 60. D7 120. D8 -120. D9 180. D10 -60. D11 60. 12 tetrahedral angles replaced. 12 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 6 0 1.451926 0.000000 2.053333 4 6 0 1.451926 0.000000 3.593333 5 1 0 2.479588 0.000000 3.956667 6 1 0 0.938095 0.889981 3.956667 7 1 0 0.938095 -0.889981 3.956667 8 1 0 1.965757 -0.889981 1.690000 9 1 0 1.965757 0.889981 1.690000 10 17 0 -0.829672 1.437034 2.126667 11 1 0 -0.513831 -0.889981 1.903333 12 1 0 -1.027662 0.000000 -0.363333 13 1 0 0.513831 0.889981 -0.363333 14 1 0 0.513831 -0.889981 -0.363333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 C 2.514809 1.540000 0.000000 4 C 3.875582 2.514809 1.540000 0.000000 5 H 4.669429 3.462461 2.163046 1.090000 0.000000 6 H 4.162607 2.740870 2.163046 1.090000 1.779963 7 H 4.162607 2.740870 2.163046 1.090000 1.779963 8 H 2.740870 2.163046 1.090000 2.163046 2.488748 9 H 2.740870 2.163046 1.090000 2.163046 2.488748 10 Cl 2.697431 1.760000 2.697431 3.069506 4.045388 11 H 2.163046 1.090000 2.163046 2.740870 3.737486 12 H 1.090000 2.163046 3.462461 4.669429 5.564459 13 H 1.090000 2.163046 2.740870 4.162607 4.828941 14 H 1.090000 2.163046 2.740870 4.162607 4.828941 6 7 8 9 10 6 H 0.000000 7 H 1.779963 0.000000 8 H 3.059760 2.488748 0.000000 9 H 2.488748 3.059760 1.779963 0.000000 10 Cl 2.602531 3.448028 3.663345 2.881730 0.000000 11 H 3.080996 2.514809 2.488748 3.059760 2.358948 12 H 4.828941 4.828941 3.737486 3.737486 2.881730 13 H 4.340783 4.691553 3.080996 2.514809 2.881730 14 H 4.691553 4.340783 2.514809 3.080996 3.663345 11 12 13 14 11 H 0.000000 12 H 2.488748 0.000000 13 H 3.059760 1.779963 0.000000 14 H 2.488748 1.779963 1.779963 0.000000 Stoichiometry C4H9Cl Framework group C1[X(C4H9Cl)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.458687 1.333428 -0.026331 2 6 0 0.312834 0.393043 0.391158 3 6 0 -0.988333 0.827015 -0.309007 4 6 0 -2.134185 -0.113371 0.108482 5 1 0 -3.055142 0.193792 -0.387090 6 1 0 -1.889262 -1.135303 -0.180941 7 1 0 -2.269179 -0.064197 1.188972 8 1 0 -1.233257 1.848948 -0.019584 9 1 0 -0.853340 0.777842 -1.389497 10 17 0 0.708308 -1.257051 -0.076167 11 1 0 0.177841 0.442216 1.471648 12 1 0 2.379643 1.026266 0.469241 13 1 0 1.593680 1.284255 -1.106821 14 1 0 1.213763 2.355361 0.263092 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6115444 3.3187302 2.0996969 Standard basis: 6-31G(d) (6D, 7F) There are 97 symmetry adapted cartesian basis functions of A symmetry. There are 97 symmetry adapted basis functions of A symmetry. 97 basis functions, 200 primitive gaussians, 97 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 236.8497536780 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 97 RedAO= T EigKep= 4.39D-03 NBF= 97 NBsUse= 97 1.00D-06 EigRej= -1.00D+00 NBFU= 97 ExpMin= 1.43D-01 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=12265224. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -618.051202078 A.U. after 12 cycles NFock= 12 Conv=0.88D-08 -V/T= 2.0047 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 97 NBasis= 97 NAE= 25 NBE= 25 NFC= 0 NFV= 0 NROrb= 97 NOA= 25 NOB= 25 NVA= 72 NVB= 72 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in canonical form, NReq=13341763. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 6.00D-14 3.33D-08 XBig12= 4.03D+00 5.55D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 6.00D-14 3.33D-08 XBig12= 3.80D-03 2.04D-02. 3 vectors produced by pass 2 Test12= 6.00D-14 3.33D-08 XBig12= 6.33D-06 1.67D-03. 3 vectors produced by pass 3 Test12= 6.00D-14 3.33D-08 XBig12= 1.25D-08 4.34D-05. 3 vectors produced by pass 4 Test12= 6.00D-14 3.33D-08 XBig12= 2.38D-11 1.67D-06. 1 vectors produced by pass 5 Test12= 6.00D-14 3.33D-08 XBig12= 1.94D-14 3.87D-08. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 16 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 161.5782 Anisotropy = 39.9669 XX= 169.5234 YX= 17.8257 ZX= -3.5706 XY= 15.6822 YY= 171.7846 ZY= -0.4282 XZ= -8.8123 YZ= -4.0997 ZZ= 143.4267 Eigenvalues: 141.9243 154.5876 188.2228 2 C Isotropic = 132.8642 Anisotropy = 35.4445 XX= 137.7131 YX= -3.7228 ZX= 0.4321 XY= -9.8018 YY= 151.0786 ZY= 10.1205 XZ= 2.4625 YZ= 14.4873 ZZ= 109.8009 Eigenvalues: 106.0816 136.0171 156.4939 3 C Isotropic = 153.8830 Anisotropy = 29.1850 XX= 167.5601 YX= -10.6458 ZX= 5.9252 XY= -6.6519 YY= 148.3625 ZY= -3.4269 XZ= 9.1805 YZ= -3.1942 ZZ= 145.7265 Eigenvalues: 143.1961 145.1133 173.3397 4 C Isotropic = 174.9555 Anisotropy = 20.3768 XX= 183.9835 YX= 5.9863 ZX= -1.6197 XY= 8.3411 YY= 169.0131 ZY= -4.2551 XZ= -5.3152 YZ= -6.3794 ZZ= 171.8700 Eigenvalues: 164.1163 172.2103 188.5400 5 H Isotropic = 31.3552 Anisotropy = 10.2194 XX= 37.3272 YX= -0.6022 ZX= 2.9529 XY= 0.0232 YY= 28.0948 ZY= -0.9561 XZ= 2.5839 YZ= -1.1871 ZZ= 28.6437 Eigenvalues: 26.9959 28.9015 38.1681 6 H Isotropic = 30.4939 Anisotropy = 5.0239 XX= 32.5481 YX= 1.2264 ZX= -0.2322 XY= -0.2565 YY= 33.2581 ZY= 1.9970 XZ= 0.1791 YZ= 1.6534 ZZ= 25.6755 Eigenvalues: 25.2566 32.3820 33.8432 7 H Isotropic = 31.6474 Anisotropy = 8.7341 XX= 31.8943 YX= 1.0347 ZX= -3.9395 XY= 0.5738 YY= 28.0672 ZY= -0.8272 XZ= -3.3485 YZ= -0.1240 ZZ= 34.9807 Eigenvalues: 27.8884 29.5837 37.4701 8 H Isotropic = 30.6968 Anisotropy = 7.5293 XX= 31.3802 YX= -2.1503 ZX= -0.4001 XY= -1.7209 YY= 34.7990 ZY= 0.6066 XZ= -0.4067 YZ= 0.4766 ZZ= 25.9113 Eigenvalues: 25.8624 30.5117 35.7163 9 H Isotropic = 30.9384 Anisotropy = 5.8036 XX= 30.6642 YX= 0.5440 ZX= 0.6879 XY= 0.4489 YY= 28.2823 ZY= -2.6820 XZ= -0.0061 YZ= -2.2531 ZZ= 33.8686 Eigenvalues: 27.2482 30.7595 34.8074 10 Cl Isotropic = 826.7571 Anisotropy = 340.2685 XX= 721.1141 YX= -81.2229 ZX= -32.9714 XY= -65.7208 YY= 983.0977 ZY= 100.5278 XZ= -32.5920 YZ= 129.0068 ZZ= 776.0594 Eigenvalues: 701.6461 725.0224 1053.6027 11 H Isotropic = 28.8810 Anisotropy = 7.2638 XX= 26.1190 YX= -0.3457 ZX= -0.9266 XY= -0.0615 YY= 28.2777 ZY= 3.1104 XZ= -0.5534 YZ= 2.3801 ZZ= 32.2462 Eigenvalues: 26.0169 26.9025 33.7235 12 H Isotropic = 30.7312 Anisotropy = 8.9569 XX= 35.5745 YX= 0.7501 ZX= 3.3407 XY= 2.4325 YY= 29.0647 ZY= -0.2519 XZ= 2.1652 YZ= -0.2772 ZZ= 27.5544 Eigenvalues: 26.4797 29.0114 36.7024 13 H Isotropic = 31.0097 Anisotropy = 6.5166 XX= 30.6013 YX= 1.5909 ZX= -2.9038 XY= 2.0953 YY= 29.6959 ZY= -2.0080 XZ= -2.0263 YZ= -1.2348 ZZ= 32.7320 Eigenvalues: 28.2240 29.4511 35.3541 14 H Isotropic = 31.1488 Anisotropy = 9.4084 XX= 29.4827 YX= 2.3624 ZX= 0.0917 XY= 1.3129 YY= 36.6865 ZY= 2.0278 XZ= 0.1475 YZ= 1.4581 ZZ= 27.2772 Eigenvalues: 26.9454 29.0800 37.4211 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -101.52798 -10.24419 -10.19061 -10.18506 -10.17200 Alpha occ. eigenvalues -- -9.44562 -7.20918 -7.19982 -7.19970 -0.87223 Alpha occ. eigenvalues -- -0.76738 -0.72824 -0.63421 -0.57954 -0.48426 Alpha occ. eigenvalues -- -0.44911 -0.43386 -0.42465 -0.38724 -0.37458 Alpha occ. eigenvalues -- -0.35604 -0.34925 -0.33732 -0.29122 -0.28681 Alpha virt. eigenvalues -- 0.04856 0.09080 0.12135 0.12611 0.15894 Alpha virt. eigenvalues -- 0.16301 0.17756 0.17823 0.18488 0.19744 Alpha virt. eigenvalues -- 0.22015 0.22338 0.24047 0.40304 0.44127 Alpha virt. eigenvalues -- 0.46261 0.49435 0.49576 0.51570 0.54490 Alpha virt. eigenvalues -- 0.56086 0.59052 0.61376 0.62845 0.65228 Alpha virt. eigenvalues -- 0.70904 0.74081 0.77798 0.82802 0.85499 Alpha virt. eigenvalues -- 0.87836 0.89180 0.89887 0.90600 0.92344 Alpha virt. eigenvalues -- 0.92815 0.93970 0.97336 0.97736 0.99293 Alpha virt. eigenvalues -- 1.00880 1.04481 1.10952 1.17868 1.39393 Alpha virt. eigenvalues -- 1.43971 1.45676 1.49624 1.64358 1.67781 Alpha virt. eigenvalues -- 1.84684 1.86005 1.89509 1.94974 1.98104 Alpha virt. eigenvalues -- 2.00191 2.06056 2.17965 2.22489 2.25361 Alpha virt. eigenvalues -- 2.28837 2.34171 2.38867 2.39412 2.51476 Alpha virt. eigenvalues -- 2.63116 2.74175 4.10468 4.22825 4.28777 Alpha virt. eigenvalues -- 4.37249 4.51002 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.127157 0.359979 -0.051374 0.005112 -0.000154 0.000182 2 C 0.359979 5.098292 0.365382 -0.053236 0.005219 -0.009150 3 C -0.051374 0.365382 5.038059 0.374571 -0.030533 -0.033562 4 C 0.005112 -0.053236 0.374571 5.082792 0.371669 0.383240 5 H -0.000154 0.005219 -0.030533 0.371669 0.572094 -0.026967 6 H 0.000182 -0.009150 -0.033562 0.383240 -0.026967 0.529394 7 H 0.000073 -0.005387 -0.038194 0.378548 -0.029341 -0.028963 8 H -0.003536 -0.031497 0.366190 -0.036672 -0.002454 0.004767 9 H -0.004731 -0.041155 0.377820 -0.037199 -0.002923 -0.003889 10 Cl -0.070086 0.238702 -0.069718 -0.014688 0.000229 0.011118 11 H -0.043812 0.372251 -0.045330 -0.004514 -0.000058 -0.000083 12 H 0.372811 -0.032590 0.005151 -0.000190 0.000003 0.000003 13 H 0.379227 -0.036374 -0.006370 0.000028 0.000002 0.000007 14 H 0.361034 -0.027828 -0.003089 -0.000015 -0.000008 -0.000008 7 8 9 10 11 12 1 C 0.000073 -0.003536 -0.004731 -0.070086 -0.043812 0.372811 2 C -0.005387 -0.031497 -0.041155 0.238702 0.372251 -0.032590 3 C -0.038194 0.366190 0.377820 -0.069718 -0.045330 0.005151 4 C 0.378548 -0.036672 -0.037199 -0.014688 -0.004514 -0.000190 5 H -0.029341 -0.002454 -0.002923 0.000229 -0.000058 0.000003 6 H -0.028963 0.004767 -0.003889 0.011118 -0.000083 0.000003 7 H 0.574850 -0.003933 0.005208 -0.000103 0.005761 0.000001 8 H -0.003933 0.589349 -0.032612 0.005738 -0.002271 -0.000045 9 H 0.005208 -0.032612 0.576511 0.000008 0.005755 -0.000028 10 Cl -0.000103 0.005738 0.000008 17.015405 -0.049732 0.000326 11 H 0.005761 -0.002271 0.005755 -0.049732 0.584720 -0.003207 12 H 0.000001 -0.000045 -0.000028 0.000326 -0.003207 0.551546 13 H 0.000009 -0.000136 0.005239 0.000294 0.005192 -0.027293 14 H -0.000001 0.003241 -0.000074 0.005704 -0.001539 -0.027761 13 14 1 C 0.379227 0.361034 2 C -0.036374 -0.027828 3 C -0.006370 -0.003089 4 C 0.000028 -0.000015 5 H 0.000002 -0.000008 6 H 0.000007 -0.000008 7 H 0.000009 -0.000001 8 H -0.000136 0.003241 9 H 0.005239 -0.000074 10 Cl 0.000294 0.005704 11 H 0.005192 -0.001539 12 H -0.027293 -0.027761 13 H 0.545079 -0.027784 14 H -0.027784 0.567556 Mulliken charges: 1 1 C -0.431881 2 C -0.202608 3 C -0.249002 4 C -0.449445 5 H 0.143221 6 H 0.173909 7 H 0.141473 8 H 0.143872 9 H 0.152070 10 Cl -0.073197 11 H 0.176866 12 H 0.161274 13 H 0.162879 14 H 0.150569 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.042841 2 C -0.025742 3 C 0.046939 4 C 0.009158 10 Cl -0.073197 Electronic spatial extent (au): = 625.5066 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.4926 Y= 1.8434 Z= 0.3623 Tot= 1.9421 Quadrupole moment (field-independent basis, Debye-Ang): XX= -40.0373 YY= -40.1445 ZZ= -38.7841 XY= 0.7789 XZ= 0.3426 YZ= 0.4711 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.3820 YY= -0.4892 ZZ= 0.8712 XY= 0.7789 XZ= 0.3426 YZ= 0.4711 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 3.5965 YYY= -3.9182 ZZZ= 0.4960 XYY= 0.3159 XXY= 0.1240 XXZ= -0.4376 XZZ= 0.8361 YZZ= -0.5261 YYZ= -0.5116 XYZ= 0.1467 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -457.6838 YYYY= -293.1704 ZZZZ= -77.5845 XXXY= -5.9336 XXXZ= 5.1727 YYYX= -6.5069 YYYZ= 5.6590 ZZZX= -1.2947 ZZZY= -0.1071 XXYY= -128.4147 XXZZ= -88.5291 YYZZ= -65.5415 XXYZ= 0.5229 YYXZ= -0.7245 ZZXY= -0.7626 N-N= 2.368497536780D+02 E-N=-1.931946023868D+03 KE= 6.151729933053D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C4H9Cl1\AVANAARTSEN\25-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\2-chlorobutane\\0,1\C\C, 1,1.54\C,2,1.54,1,109.47122063\C,3,1.54,2,109.47122063,1,180.,0\H,4,1. 09,3,109.47122063,2,180.,0\H,4,1.09,3,109.47122063,2,-60.,0\H,4,1.09,3 ,109.47122063,2,60.,0\H,3,1.09,2,109.47122063,1,-60.,0\H,3,1.09,2,109. 47122063,1,60.,0\Cl,2,1.76,1,109.47122063,3,120.,0\H,2,1.09,1,109.4712 2063,3,-120.,0\H,1,1.09,2,109.47122063,3,180.,0\H,1,1.09,2,109.4712206 3,3,-60.,0\H,1,1.09,2,109.47122063,3,60.,0\\Version=EM64L-G09RevD.01\S tate=1-A\HF=-618.0512021\RMSD=8.765e-09\Dipole=0.4136469,-0.5874715,-0 .2600338\Quadrupole=-0.3932557,0.3310334,0.0622223,0.7992041,0.1194612 ,0.228168\PG=C01 [X(C4H9Cl1)]\\@ "I COULD HAVE DONE IT IN A MUCH MORE COMPLICATED WAY" SAID THE RED QUEEN, IMMENSELY PROUD. -- LEWIS CARROLL Job cpu time: 0 days 0 hours 0 minutes 21.2 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri Jan 25 10:38:30 2019.