Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324265/Gau-8244.inp" -scrdir="/scratch/webmo-13362/324265/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 8245. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------------------- 2-Bromo-2-methylpropane ----------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 H 2 B2 1 A1 H 2 B3 1 A2 3 D1 0 H 2 B4 1 A3 3 D2 0 C 1 B5 2 A4 3 D3 0 H 6 B6 1 A5 2 D4 0 H 6 B7 1 A6 2 D5 0 H 6 B8 1 A7 2 D6 0 C 1 B9 2 A8 3 D7 0 H 10 B10 1 A9 2 D8 0 H 10 B11 1 A10 2 D9 0 H 10 B12 1 A11 2 D10 0 Br 1 B13 2 A12 3 D11 0 Variables: B1 1.54 B2 1.09 B3 1.09 B4 1.09 B5 1.54 B6 1.09 B7 1.09 B8 1.09 B9 1.54 B10 1.09 B11 1.09 B12 1.09 B13 1.91 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 A7 109.47122 A8 109.47122 A9 109.47122 A10 109.47122 A11 109.47122 A12 109.47122 D1 120. D2 -120. D3 -180. D4 180. D5 -60. D6 60. D7 60. D8 -180. D9 -60. D10 60. D11 -60. 12 tetrahedral angles replaced. 12 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 1 0 1.027662 0.000000 1.903333 4 1 0 -0.513831 0.889981 1.903333 5 1 0 -0.513831 -0.889981 1.903333 6 6 0 -1.451926 0.000000 -0.513333 7 1 0 -1.451926 0.000000 -1.603333 8 1 0 -1.965757 -0.889981 -0.150000 9 1 0 -1.965757 0.889981 -0.150000 10 6 0 0.725963 -1.257405 -0.513333 11 1 0 0.725963 -1.257405 -1.603333 12 1 0 1.753625 -1.257405 -0.150000 13 1 0 0.212132 -2.147386 -0.150000 14 35 0 0.900383 1.559508 -0.636667 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 H 2.163046 1.090000 0.000000 4 H 2.163046 1.090000 1.779963 0.000000 5 H 2.163046 1.090000 1.779963 1.779963 0.000000 6 C 1.540000 2.514809 3.462461 2.740870 2.740870 7 H 2.163046 3.462461 4.294772 3.737486 3.737486 8 H 2.163046 2.740870 3.737486 3.080996 2.514809 9 H 2.163046 2.740870 3.737486 2.514809 3.080996 10 C 1.540000 2.514809 2.740870 3.462461 2.740870 11 H 2.163046 3.462461 3.737486 4.294772 3.737486 12 H 2.163046 2.740870 2.514809 3.737486 3.080996 13 H 2.163046 2.740870 3.080996 3.737486 2.514809 14 Br 1.910000 2.825001 2.983264 2.983264 3.801526 6 7 8 9 10 6 C 0.000000 7 H 1.090000 0.000000 8 H 1.090000 1.779963 0.000000 9 H 1.090000 1.779963 1.779963 0.000000 10 C 2.514809 2.740870 2.740870 3.462461 0.000000 11 H 2.740870 2.514809 3.080996 3.737486 1.090000 12 H 3.462461 3.737486 3.737486 4.294772 1.090000 13 H 2.740870 3.080996 2.514809 3.737486 1.090000 14 Br 2.825001 2.983264 3.801526 2.983264 2.825001 11 12 13 14 11 H 0.000000 12 H 1.779963 0.000000 13 H 1.779963 1.779963 0.000000 14 Br 2.983264 2.983264 3.801526 0.000000 Stoichiometry C4H9Br Framework group C3V[C3(CBr),3SGV(CH),X(H6)] Deg. of freedom 8 Full point group C3V NOp 6 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 -0.763235 2 6 0 0.000000 1.451926 -1.276569 3 1 0 -0.889981 1.965757 -0.913235 4 1 0 0.889981 1.965757 -0.913235 5 1 0 0.000000 1.451926 -2.366569 6 6 0 1.257405 -0.725963 -1.276569 7 1 0 1.257405 -1.753625 -0.913235 8 1 0 1.257405 -0.725963 -2.366569 9 1 0 2.147386 -0.212132 -0.913235 10 6 0 -1.257405 -0.725963 -1.276569 11 1 0 -1.257405 -1.753625 -0.913235 12 1 0 -2.147386 -0.212132 -0.913235 13 1 0 -1.257405 -0.725963 -2.366569 14 35 0 0.000000 0.000000 1.146765 --------------------------------------------------------------------- Rotational constants (GHZ): 4.5768309 2.0811595 2.0811595 Standard basis: 6-31G(d) (6D, 7F) There are 69 symmetry adapted cartesian basis functions of A' symmetry. There are 39 symmetry adapted cartesian basis functions of A" symmetry. There are 69 symmetry adapted basis functions of A' symmetry. There are 39 symmetry adapted basis functions of A" symmetry. 108 basis functions, 231 primitive gaussians, 108 cartesian basis functions 34 alpha electrons 34 beta electrons nuclear repulsion energy 353.7635271253 Hartrees. NAtoms= 14 NActive= 14 NUniq= 5 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 108 RedAO= T EigKep= 1.05D-03 NBF= 69 39 NBsUse= 108 1.00D-06 EigRej= -1.00D+00 NBFU= 69 39 ExpMin= 1.43D-01 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (E) (E) (E) (E) (A1) (A1) (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A2) (E) (E) (A1) (E) (E) Virtual (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (A2) (E) (E) (A1) (A2) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=26121507. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. EnCoef did 100 forward-backward iterations Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -2729.56509473 A.U. after 14 cycles NFock= 14 Conv=0.37D-08 -V/T= 2.0063 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 108 NBasis= 108 NAE= 34 NBE= 34 NFC= 0 NFV= 0 NROrb= 108 NOA= 34 NOB= 34 NVA= 74 NVB= 74 **** Warning!!: The largest alpha MO coefficient is 0.19735136D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=26070476. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 8.39D-14 3.33D-08 XBig12= 3.79D+00 6.65D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 8.39D-14 3.33D-08 XBig12= 4.97D-03 3.65D-02. 3 vectors produced by pass 2 Test12= 8.39D-14 3.33D-08 XBig12= 2.25D-05 3.15D-03. 3 vectors produced by pass 3 Test12= 8.39D-14 3.33D-08 XBig12= 4.20D-08 7.82D-05. 3 vectors produced by pass 4 Test12= 8.39D-14 3.33D-08 XBig12= 1.29D-10 6.40D-06. 2 vectors produced by pass 5 Test12= 8.39D-14 3.33D-08 XBig12= 2.55D-13 1.44D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 17 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 132.1192 Anisotropy = 54.3722 XX= 114.0506 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 113.9398 ZY= 0.0884 XZ= 0.0000 YZ= 0.0249 ZZ= 168.3673 Eigenvalues: 113.9397 114.0506 168.3674 2 C Isotropic = 153.2215 Anisotropy = 47.2237 XX= 132.1459 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 176.4559 ZY= -16.8859 XZ= 0.0000 YZ= -16.4294 ZZ= 151.0626 Eigenvalues: 132.1459 142.8145 184.7040 3 H Isotropic = 30.5640 Anisotropy = 7.8014 XX= 29.5717 YX= -2.7066 ZX= -0.3933 XY= -4.4026 YY= 33.5470 ZY= -0.6259 XZ= 0.1594 YZ= -1.7696 ZZ= 28.5735 Eigenvalues: 27.1157 28.8115 35.7650 4 H Isotropic = 30.5640 Anisotropy = 7.8014 XX= 29.5717 YX= 2.7066 ZX= 0.3933 XY= 4.4026 YY= 33.5470 ZY= -0.6259 XZ= -0.1594 YZ= -1.7696 ZZ= 28.5735 Eigenvalues: 27.1157 28.8115 35.7650 5 H Isotropic = 31.0593 Anisotropy = 9.2151 XX= 27.4634 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 30.6034 ZY= -4.3637 XZ= 0.0000 YZ= -3.0668 ZZ= 35.1111 Eigenvalues: 27.4634 28.5118 37.2027 6 C Isotropic = 153.1900 Anisotropy = 47.2579 XX= 165.3482 YX= -19.2096 ZX= -14.6032 XY= -19.2294 YY= 143.1405 ZY= 8.4897 XZ= -14.2179 YZ= 8.2198 ZZ= 151.0813 Eigenvalues: 132.0478 142.8270 184.6953 7 H Isotropic = 30.5610 Anisotropy = 7.7954 XX= 29.4799 YX= -4.3460 ZX= -0.7379 XY= -2.6489 YY= 33.6334 ZY= -0.0228 XZ= -1.4549 YZ= 1.0213 ZZ= 28.5697 Eigenvalues: 27.1173 28.8077 35.7579 8 H Isotropic = 31.0596 Anisotropy = 9.2200 XX= 29.8199 YX= -1.3615 ZX= -3.7759 XY= -1.3630 YY= 28.2488 ZY= 2.1865 XZ= -2.6621 YZ= 1.5396 ZZ= 35.1103 Eigenvalues: 27.4618 28.5108 37.2063 9 H Isotropic = 30.5611 Anisotropy = 7.8011 XX= 35.6283 YX= 0.8989 ZX= -0.3481 XY= -0.7987 YY= 27.4856 ZY= 0.6449 XZ= -1.6109 YZ= 0.7451 ZZ= 28.5695 Eigenvalues: 27.1184 28.8031 35.7619 10 C Isotropic = 153.1900 Anisotropy = 47.2579 XX= 165.3482 YX= 19.2096 ZX= 14.6032 XY= 19.2294 YY= 143.1405 ZY= 8.4897 XZ= 14.2179 YZ= 8.2198 ZZ= 151.0813 Eigenvalues: 132.0478 142.8270 184.6953 11 H Isotropic = 30.5610 Anisotropy = 7.7954 XX= 29.4799 YX= 4.3460 ZX= 0.7379 XY= 2.6489 YY= 33.6334 ZY= -0.0228 XZ= 1.4549 YZ= 1.0213 ZZ= 28.5697 Eigenvalues: 27.1173 28.8077 35.7579 12 H Isotropic = 30.5611 Anisotropy = 7.8011 XX= 35.6283 YX= -0.8989 ZX= 0.3481 XY= 0.7987 YY= 27.4856 ZY= 0.6449 XZ= 1.6109 YZ= 0.7451 ZZ= 28.5695 Eigenvalues: 27.1184 28.8031 35.7619 13 H Isotropic = 31.0596 Anisotropy = 9.2200 XX= 29.8199 YX= 1.3615 ZX= 3.7759 XY= 1.3630 YY= 28.2488 ZY= 2.1865 XZ= 2.6621 YZ= 1.5396 ZZ= 35.1103 Eigenvalues: 27.4618 28.5108 37.2063 14 Br Isotropic = 2308.4782 Anisotropy = 1032.3477 XX= 1965.1353 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 1963.5892 ZY= 0.0462 XZ= 0.0000 YZ= 0.2113 ZZ= 2996.7100 Eigenvalues: 1963.5892 1965.1353 2996.7100 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A2) (E) (E) (A1) (E) (E) Virtual (A1) (A1) (A1) (E) (E) (E) (E) (E) (E) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (A2) (E) (E) (A2) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (A2) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -482.89093 -61.85312 -56.37366 -56.36979 -56.36979 Alpha occ. eigenvalues -- -10.24756 -10.18415 -10.18415 -10.18413 -8.56451 Alpha occ. eigenvalues -- -6.51775 -6.50572 -6.50572 -2.63362 -2.63011 Alpha occ. eigenvalues -- -2.63011 -2.62051 -2.62051 -0.84650 -0.73359 Alpha occ. eigenvalues -- -0.69732 -0.69732 -0.54433 -0.46514 -0.45010 Alpha occ. eigenvalues -- -0.45010 -0.40456 -0.40456 -0.37674 -0.34522 Alpha occ. eigenvalues -- -0.34522 -0.34195 -0.26672 -0.26672 Alpha virt. eigenvalues -- 0.02504 0.07901 0.14225 0.14669 0.14669 Alpha virt. eigenvalues -- 0.15656 0.15656 0.18650 0.18650 0.20691 Alpha virt. eigenvalues -- 0.21899 0.21899 0.22116 0.28999 0.42902 Alpha virt. eigenvalues -- 0.42902 0.45951 0.45951 0.46359 0.51421 Alpha virt. eigenvalues -- 0.51421 0.53365 0.53365 0.55746 0.60827 Alpha virt. eigenvalues -- 0.66550 0.66550 0.72579 0.74446 0.74446 Alpha virt. eigenvalues -- 0.84762 0.85266 0.86650 0.86650 0.89360 Alpha virt. eigenvalues -- 0.91504 0.91504 0.91748 0.93493 0.93493 Alpha virt. eigenvalues -- 0.94482 0.98854 0.98854 1.17470 1.43689 Alpha virt. eigenvalues -- 1.43689 1.47263 1.47263 1.56896 1.70256 Alpha virt. eigenvalues -- 1.71964 1.84624 1.84624 1.93309 1.93309 Alpha virt. eigenvalues -- 1.94563 2.10318 2.10318 2.12595 2.23486 Alpha virt. eigenvalues -- 2.24302 2.24302 2.25971 2.42060 2.47404 Alpha virt. eigenvalues -- 2.47404 2.68011 2.68011 4.13027 4.29124 Alpha virt. eigenvalues -- 4.29124 4.54857 8.65805 73.48991 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.846257 0.372774 -0.031818 -0.031818 -0.027938 0.372774 2 C 0.372774 5.157484 0.370837 0.370837 0.357754 -0.064419 3 H -0.031818 0.370837 0.551774 -0.026348 -0.028057 0.005879 4 H -0.031818 0.370837 -0.026348 0.551774 -0.028057 -0.005001 5 H -0.027938 0.357754 -0.028057 -0.028057 0.576399 -0.003986 6 C 0.372774 -0.064419 0.005879 -0.005001 -0.003986 5.157484 7 H -0.031818 0.005879 -0.000204 -0.000057 -0.000077 0.370837 8 H -0.027938 -0.003986 -0.000077 -0.000093 0.002997 0.357754 9 H -0.031818 -0.005001 -0.000057 0.004522 -0.000093 0.370837 10 C 0.372774 -0.064419 -0.005001 0.005879 -0.003986 -0.064419 11 H -0.031818 0.005879 -0.000057 -0.000204 -0.000077 -0.005001 12 H -0.031818 -0.005001 0.004522 -0.000057 -0.000093 0.005879 13 H -0.027938 -0.003986 -0.000093 -0.000077 0.002997 -0.003986 14 Br 0.278661 -0.067672 -0.000373 -0.000373 0.005701 -0.067672 7 8 9 10 11 12 1 C -0.031818 -0.027938 -0.031818 0.372774 -0.031818 -0.031818 2 C 0.005879 -0.003986 -0.005001 -0.064419 0.005879 -0.005001 3 H -0.000204 -0.000077 -0.000057 -0.005001 -0.000057 0.004522 4 H -0.000057 -0.000093 0.004522 0.005879 -0.000204 -0.000057 5 H -0.000077 0.002997 -0.000093 -0.003986 -0.000077 -0.000093 6 C 0.370837 0.357754 0.370837 -0.064419 -0.005001 0.005879 7 H 0.551774 -0.028057 -0.026348 -0.005001 0.004522 -0.000057 8 H -0.028057 0.576399 -0.028057 -0.003986 -0.000093 -0.000077 9 H -0.026348 -0.028057 0.551774 0.005879 -0.000057 -0.000204 10 C -0.005001 -0.003986 0.005879 5.157484 0.370837 0.370837 11 H 0.004522 -0.000093 -0.000057 0.370837 0.551774 -0.026348 12 H -0.000057 -0.000077 -0.000204 0.370837 -0.026348 0.551774 13 H -0.000093 0.002997 -0.000077 0.357754 -0.028057 -0.028057 14 Br -0.000373 0.005701 -0.000373 -0.067672 -0.000373 -0.000373 13 14 1 C -0.027938 0.278661 2 C -0.003986 -0.067672 3 H -0.000093 -0.000373 4 H -0.000077 -0.000373 5 H 0.002997 0.005701 6 C -0.003986 -0.067672 7 H -0.000093 -0.000373 8 H 0.002997 0.005701 9 H -0.000077 -0.000373 10 C 0.357754 -0.067672 11 H -0.028057 -0.000373 12 H -0.028057 -0.000373 13 H 0.576399 0.005701 14 Br 0.005701 35.054092 Mulliken charges: 1 1 C 0.031484 2 C -0.426960 3 H 0.159074 4 H 0.159074 5 H 0.146518 6 C -0.426960 7 H 0.159074 8 H 0.146518 9 H 0.159074 10 C -0.426960 11 H 0.159074 12 H 0.159074 13 H 0.146518 14 Br -0.144603 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.031484 2 C 0.037706 6 C 0.037706 10 C 0.037706 14 Br -0.144603 Electronic spatial extent (au): = 716.8848 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -1.9518 Tot= 1.9518 Quadrupole moment (field-independent basis, Debye-Ang): XX= -44.9170 YY= -44.9170 ZZ= -44.0740 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.2810 YY= -0.2810 ZZ= 0.5620 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -1.4324 ZZZ= 35.2432 XYY= 0.0000 XXY= 1.4324 XXZ= 11.4858 XZZ= 0.0000 YZZ= 0.0000 YYZ= 11.4858 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -221.5053 YYYY= -221.5053 ZZZZ= -430.3343 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 1.0003 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -73.8351 XXZZ= -116.9004 YYZZ= -116.9004 XXYZ= -1.0003 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 3.537635271253D+02 E-N=-7.205991785577D+03 KE= 2.712358466195D+03 Symmetry A' KE= 2.292053456457D+03 Symmetry A" KE= 4.203050097379D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C4H9Br1\AVANAARTSEN\25-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\2-Bromo-2-methylpropane\ \0,1\C\C,1,1.54\H,2,1.09,1,109.47122063\H,2,1.09,1,109.47122063,3,120. ,0\H,2,1.09,1,109.47122063,3,-120.,0\C,1,1.54,2,109.47122063,3,-180.,0 \H,6,1.09,1,109.47122063,2,179.9999991,0\H,6,1.09,1,109.47122063,2,-60 .,0\H,6,1.09,1,109.47122063,2,60.,0\C,1,1.54,2,109.47122063,3,60.,0\H, 10,1.09,1,109.47122063,2,-179.9999991,0\H,10,1.09,1,109.47122063,2,-60 .,0\H,10,1.09,1,109.47122063,2,60.,0\Br,1,1.91,2,109.47122063,3,-60.,0 \\Version=EM64L-G09RevD.01\State=1-A1\HF=-2729.5650947\RMSD=3.725e-09\ Dipole=-0.3619891,-0.6269835,0.2559649\Quadrupole=-0.0696429,0.2089288 ,-0.1392858,0.2412502,-0.09849,-0.1705896\PG=C03V [C3(C1Br1),3SGV(C1H1 ),X(H6)]\\@ THE PROBLEM WITH THE LADDER OF SUCCESS IS YOU CAN'T CLIMB IT WHILE YOU'RE TWIDDLING YOUR THUMBS. Job cpu time: 0 days 0 hours 0 minutes 19.9 seconds. File lengths (MBytes): RWF= 7 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri Jan 25 11:12:14 2019.