Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324268/Gau-8532.inp" -scrdir="/scratch/webmo-13362/324268/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 8533. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 25-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------ 1,2-dichloroethane ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 Cl 2 B2 1 A1 H 2 B3 1 A2 3 D1 0 H 2 B4 1 A3 3 D2 0 Cl 1 B5 2 A4 3 D3 0 H 1 B6 2 A5 3 D4 0 H 1 B7 2 A6 3 D5 0 Variables: B1 1.54 B2 1.76 B3 1.09 B4 1.09 B5 1.76 B6 1.09 B7 1.09 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 D1 120. D2 -120. D3 180. D4 -60. D5 60. 6 tetrahedral angles replaced. 6 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 17 0 1.659344 0.000000 2.126667 4 1 0 -0.513831 0.889981 1.903333 5 1 0 -0.513831 -0.889981 1.903333 6 17 0 -1.659344 0.000000 -0.586667 7 1 0 0.513831 0.889981 -0.363333 8 1 0 0.513831 -0.889981 -0.363333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 Cl 2.697431 1.760000 0.000000 4 H 2.163046 1.090000 2.358948 0.000000 5 H 2.163046 1.090000 2.358948 1.779963 0.000000 6 Cl 1.760000 2.697431 4.286708 2.881730 2.881730 7 H 1.090000 2.163046 2.881730 2.488748 3.059760 8 H 1.090000 2.163046 2.881730 3.059760 2.488748 6 7 8 6 Cl 0.000000 7 H 2.358948 0.000000 8 H 2.358948 1.779963 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.473671 0.607071 0.000000 2 6 0 -0.473671 -0.607071 0.000000 3 17 0 0.473671 -2.090359 0.000000 4 1 0 -1.102285 -0.577438 0.889981 5 1 0 -1.102285 -0.577438 -0.889981 6 17 0 -0.473671 2.090359 0.000000 7 1 0 1.102285 0.577438 0.889981 8 1 0 1.102285 0.577438 -0.889981 --------------------------------------------------------------------- Rotational constants (GHZ): 29.1781137 1.5276137 1.4787393 Standard basis: 6-31G(d) (6D, 7F) There are 27 symmetry adapted cartesian basis functions of AG symmetry. There are 11 symmetry adapted cartesian basis functions of BG symmetry. There are 11 symmetry adapted cartesian basis functions of AU symmetry. There are 27 symmetry adapted cartesian basis functions of BU symmetry. There are 27 symmetry adapted basis functions of AG symmetry. There are 11 symmetry adapted basis functions of BG symmetry. There are 11 symmetry adapted basis functions of AU symmetry. There are 27 symmetry adapted basis functions of BU symmetry. 76 basis functions, 176 primitive gaussians, 76 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 196.0331575140 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 76 RedAO= T EigKep= 7.21D-03 NBF= 27 11 11 27 NBsUse= 76 1.00D-06 EigRej= -1.00D+00 NBFU= 27 11 11 27 ExpMin= 1.43D-01 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (AG) (BU) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (BU) (AG) (AG) (AU) (BU) (BU) (BG) (BU) (AG) (BU) (AG) (AG) (BG) (AU) (BU) (AG) (AU) (BU) (AG) (BG) (BU) (BG) (AU) (AG) (BU) (AU) (AG) (BG) (BU) (AU) (BU) (AG) (AG) (BU) (BG) (AG) (BU) (BU) (AU) (AG) (BG) (AG) (AU) (BU) (BG) (AG) (BU) (AG) (BU) (AG) (BU) The electronic state of the initial guess is 1-AG. Keep R1 ints in memory in symmetry-blocked form, NReq=5436556. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -999.016667649 A.U. after 12 cycles NFock= 12 Conv=0.41D-08 -V/T= 2.0035 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 76 NBasis= 76 NAE= 25 NBE= 25 NFC= 0 NFV= 0 NROrb= 76 NOA= 25 NOB= 25 NVA= 51 NVB= 51 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=6332170. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 4.25D-14 3.33D-08 XBig12= 2.02D+00 7.94D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 4.25D-14 3.33D-08 XBig12= 2.84D-03 2.81D-02. 3 vectors produced by pass 2 Test12= 4.25D-14 3.33D-08 XBig12= 1.04D-05 1.75D-03. 3 vectors produced by pass 3 Test12= 4.25D-14 3.33D-08 XBig12= 2.40D-08 5.31D-05. 3 vectors produced by pass 4 Test12= 4.25D-14 3.33D-08 XBig12= 2.17D-11 1.43D-06. 1 vectors produced by pass 5 Test12= 4.25D-14 3.33D-08 XBig12= 3.58D-14 8.37D-08. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 16 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 146.1220 Anisotropy = 51.0354 XX= 144.6293 YX= -5.5098 ZX= 0.0000 XY= -15.0524 YY= 177.1694 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 116.5672 Eigenvalues: 116.5672 141.6532 180.1456 2 C Isotropic = 146.1220 Anisotropy = 51.0354 XX= 144.6293 YX= -5.5098 ZX= 0.0000 XY= -15.0524 YY= 177.1694 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 116.5672 Eigenvalues: 116.5672 141.6532 180.1456 3 Cl Isotropic = 871.0904 Anisotropy = 314.5151 XX= 867.4716 YX= -113.0364 ZX= 0.0000 XY= -100.8672 YY= 1027.1388 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 718.6609 Eigenvalues: 718.6609 813.8432 1080.7671 4 H Isotropic = 29.1085 Anisotropy = 7.0341 XX= 29.1906 YX= -1.8908 ZX= -5.2796 XY= -1.5526 YY= 30.5489 ZY= 0.4158 XZ= -4.4070 YZ= -0.6184 ZZ= 27.5859 Eigenvalues: 23.2796 30.2479 33.7979 5 H Isotropic = 29.1085 Anisotropy = 7.0341 XX= 29.1906 YX= -1.8908 ZX= 5.2796 XY= -1.5526 YY= 30.5489 ZY= -0.4158 XZ= 4.4070 YZ= 0.6184 ZZ= 27.5859 Eigenvalues: 23.2796 30.2479 33.7979 6 Cl Isotropic = 871.0904 Anisotropy = 314.5151 XX= 867.4716 YX= -113.0364 ZX= 0.0000 XY= -100.8672 YY= 1027.1388 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 718.6609 Eigenvalues: 718.6609 813.8432 1080.7671 7 H Isotropic = 29.1085 Anisotropy = 7.0341 XX= 29.1906 YX= -1.8908 ZX= 5.2796 XY= -1.5526 YY= 30.5489 ZY= -0.4158 XZ= 4.4070 YZ= 0.6184 ZZ= 27.5859 Eigenvalues: 23.2796 30.2479 33.7979 8 H Isotropic = 29.1085 Anisotropy = 7.0341 XX= 29.1906 YX= -1.8908 ZX= -5.2796 XY= -1.5526 YY= 30.5489 ZY= 0.4158 XZ= -4.4070 YZ= -0.6184 ZZ= 27.5859 Eigenvalues: 23.2796 30.2479 33.7979 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (BU) (AG) (AG) (AU) (BU) (BG) (BU) (BU) (AG) (BU) (AG) (BG) (AU) (AG) (BU) (AG) (AU) (AG) (BG) (BU) (BU) (BG) (AU) (AU) (AG) (AG) (BU) (BG) (AU) (BU) (BU) (AG) (AG) (BU) (BG) (AG) (BU) (BU) (AU) (AG) (AG) (BG) (BU) (AG) (AU) (BG) (BU) (AG) (BU) (AG) (BU) The electronic state is 1-AG. Alpha occ. eigenvalues -- -101.54903-101.54903 -10.26166 -10.26145 -9.46631 Alpha occ. eigenvalues -- -9.46630 -7.23024 -7.23024 -7.22041 -7.22040 Alpha occ. eigenvalues -- -7.22016 -7.22015 -0.89722 -0.85790 -0.72346 Alpha occ. eigenvalues -- -0.63342 -0.51025 -0.46683 -0.44460 -0.42114 Alpha occ. eigenvalues -- -0.40634 -0.32311 -0.31140 -0.30727 -0.30245 Alpha virt. eigenvalues -- 0.01903 0.03881 0.11280 0.11824 0.12621 Alpha virt. eigenvalues -- 0.15606 0.16543 0.36968 0.38014 0.40563 Alpha virt. eigenvalues -- 0.43265 0.44266 0.46099 0.46698 0.47768 Alpha virt. eigenvalues -- 0.50769 0.53254 0.58148 0.59234 0.59835 Alpha virt. eigenvalues -- 0.70087 0.82671 0.83326 0.86179 0.86280 Alpha virt. eigenvalues -- 0.87849 0.87899 0.88892 0.90302 0.90785 Alpha virt. eigenvalues -- 0.95187 0.99594 1.02105 1.08313 1.17353 Alpha virt. eigenvalues -- 1.22224 1.48314 1.52435 1.57599 1.87297 Alpha virt. eigenvalues -- 1.95680 1.96397 2.22102 2.23643 2.23707 Alpha virt. eigenvalues -- 2.24991 2.54229 4.04179 4.20336 4.29950 Alpha virt. eigenvalues -- 4.37713 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.219894 0.323628 -0.056478 -0.039789 -0.039789 0.211724 2 C 0.323628 5.219894 0.211724 0.373736 0.373736 -0.056478 3 Cl -0.056478 0.211724 16.975975 -0.044896 -0.044896 0.006133 4 H -0.039789 0.373736 -0.044896 0.531587 -0.033035 0.002863 5 H -0.039789 0.373736 -0.044896 -0.033035 0.531587 0.002863 6 Cl 0.211724 -0.056478 0.006133 0.002863 0.002863 16.975975 7 H 0.373736 -0.039789 0.002863 -0.005486 0.005045 -0.044896 8 H 0.373736 -0.039789 0.002863 0.005045 -0.005486 -0.044896 7 8 1 C 0.373736 0.373736 2 C -0.039789 -0.039789 3 Cl 0.002863 0.002863 4 H -0.005486 0.005045 5 H 0.005045 -0.005486 6 Cl -0.044896 -0.044896 7 H 0.531587 -0.033035 8 H -0.033035 0.531587 Mulliken charges: 1 1 C -0.366663 2 C -0.366663 3 Cl -0.053288 4 H 0.209975 5 H 0.209975 6 Cl -0.053288 7 H 0.209975 8 H 0.209975 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.053288 2 C 0.053288 3 Cl -0.053288 6 Cl -0.053288 Electronic spatial extent (au): = 705.2708 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.1543 YY= -44.6922 ZZ= -37.3889 XY= 1.9040 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.5909 YY= -4.9470 ZZ= 2.3562 XY= 1.9040 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -108.3201 YYYY= -734.9404 ZZZZ= -52.4649 XXXY= 60.9826 XXXZ= 0.0000 YYYX= 47.0852 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -135.0531 XXZZ= -25.0054 YYZZ= -134.8040 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 22.8253 N-N= 1.960331575140D+02 E-N=-2.761116601933D+03 KE= 9.955323566557D+02 Symmetry AG KE= 4.515689201580D+02 Symmetry BG KE= 4.787780094128D+01 Symmetry AU KE= 4.777160618673D+01 Symmetry BU KE= 4.483140293697D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C2H4Cl2\AVANAARTSEN\25-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\1,2-dichloroethane\\0,1\ C\C,1,1.54\Cl,2,1.76,1,109.47122063\H,2,1.09,1,109.47122063,3,120.,0\H ,2,1.09,1,109.47122063,3,-120.,0\Cl,1,1.76,2,109.47122063,3,180.,0\H,1 ,1.09,2,109.47122063,3,-60.,0\H,1,1.09,2,109.47122063,3,60.,0\\Version =EM64L-G09RevD.01\State=1-AG\HF=-999.0166676\RMSD=4.079e-09\Dipole=0., 0.,0.\Quadrupole=-1.5675691,1.7517655,-0.1841965,0.,-3.0622248,0.\PG=C 02H [SGH(C2Cl2),X(H4)]\\@ THEORY: SUPPOSITION WHICH HAS SCIENTIFIC BASIS, BUT NOT EXPERIMENTALLY PROVEN. FACT: A THEORY WHICH HAS BEEN PROVEN BY ENOUGH MONEY TO PAY FOR THE EXPERIMENTS. -- THE WIZARD OF ID Job cpu time: 0 days 0 hours 0 minutes 6.3 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Fri Jan 25 11:28:33 2019.