Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324281/Gau-21777.inp" -scrdir="/scratch/webmo-13362/324281/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 21778. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ---------------------- (E)-1,2-difluoroethene ---------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 F 2 B2 1 A1 H 2 B3 1 A2 3 D1 0 F 1 B4 2 A3 3 D2 0 H 1 B5 2 A4 3 D3 0 Variables: B1 1.309 B2 1.49 B3 1.09 B4 1.49 B5 1.09 A1 120. A2 120. A3 120. A4 120. D1 180. D2 180. D3 0. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.309000 3 9 0 1.290378 0.000000 2.054000 4 1 0 -0.943968 0.000000 1.854000 5 9 0 -1.290378 0.000000 -0.745000 6 1 0 0.943968 0.000000 -0.545000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.309000 0.000000 3 F 2.425694 1.490000 0.000000 4 H 2.080479 1.090000 2.243279 0.000000 5 F 1.490000 2.425694 3.807191 2.621984 0.000000 6 H 1.090000 2.080479 2.621984 3.052786 2.243279 6 6 H 0.000000 Stoichiometry C2H2F2 Framework group C2H[SGH(C2H2F2)] Deg. of freedom 5 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.348169 0.554210 0.000000 2 6 0 0.348169 -0.554210 0.000000 3 9 0 -0.348169 -1.871484 0.000000 4 1 0 1.437410 -0.513543 0.000000 5 9 0 0.348169 1.871484 0.000000 6 1 0 -1.437410 0.513543 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 55.8633158 3.5188995 3.3103749 Standard basis: 6-31G(d) (6D, 7F) There are 24 symmetry adapted cartesian basis functions of AG symmetry. There are 8 symmetry adapted cartesian basis functions of BG symmetry. There are 8 symmetry adapted cartesian basis functions of AU symmetry. There are 24 symmetry adapted cartesian basis functions of BU symmetry. There are 24 symmetry adapted basis functions of AG symmetry. There are 8 symmetry adapted basis functions of BG symmetry. There are 8 symmetry adapted basis functions of AU symmetry. There are 24 symmetry adapted basis functions of BU symmetry. 64 basis functions, 120 primitive gaussians, 64 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 104.6594247851 Hartrees. NAtoms= 6 NActive= 6 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 64 RedAO= T EigKep= 4.62D-03 NBF= 24 8 8 24 NBsUse= 64 1.00D-06 EigRej= -1.00D+00 NBFU= 24 8 8 24 ExpMin= 1.61D-01 ExpMax= 7.00D+03 ExpMxC= 1.05D+03 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (BU) (AG) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AG) (AU) (BG) (BU) (AG) (AU) Virtual (BU) (BG) (AG) (BU) (AG) (BU) (AG) (AU) (AG) (BU) (BG) (BU) (BU) (AG) (AG) (BU) (BU) (BG) (AU) (AG) (AG) (BU) (AU) (BG) (AU) (AG) (BU) (AG) (BU) (BG) (AU) (BU) (AG) (BU) (AG) (BG) (AG) (BU) (AU) (BG) (AG) (BU) (BU) (AG) (BU) (AG) (AG) (BU) The electronic state of the initial guess is 1-AG. Keep R1 ints in memory in symmetry-blocked form, NReq=3086928. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -277.011586188 A.U. after 11 cycles NFock= 11 Conv=0.68D-08 -V/T= 2.0090 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 64 NBasis= 64 NAE= 16 NBE= 16 NFC= 0 NFV= 0 NROrb= 64 NOA= 16 NOB= 16 NVA= 48 NVB= 48 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=4211791. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.56D-14 3.33D-08 XBig12= 1.55D+00 7.23D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.56D-14 3.33D-08 XBig12= 3.28D-03 2.97D-02. 3 vectors produced by pass 2 Test12= 2.56D-14 3.33D-08 XBig12= 1.28D-05 2.29D-03. 3 vectors produced by pass 3 Test12= 2.56D-14 3.33D-08 XBig12= 9.14D-08 1.75D-04. 3 vectors produced by pass 4 Test12= 2.56D-14 3.33D-08 XBig12= 1.68D-10 6.42D-06. 2 vectors produced by pass 5 Test12= 2.56D-14 3.33D-08 XBig12= 8.66D-14 1.01D-07. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 17 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 33.4041 Anisotropy = 71.4636 XX= -20.4291 YX= -24.5169 ZX= 0.0000 XY= -49.9031 YY= 39.5949 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 81.0465 Eigenvalues: -38.2219 57.3877 81.0465 2 C Isotropic = 33.4041 Anisotropy = 71.4636 XX= -20.4291 YX= -24.5169 ZX= 0.0000 XY= -49.9031 YY= 39.5949 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 81.0465 Eigenvalues: -38.2219 57.3877 81.0465 3 F Isotropic = 303.7774 Anisotropy = 106.1846 XX= 286.9541 YX= 86.4922 ZX= 0.0000 XY= 46.3625 YY= 324.2025 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 300.1755 Eigenvalues: 236.5896 300.1755 374.5671 4 H Isotropic = 24.3686 Anisotropy = 4.5425 XX= 22.0702 YX= -0.4975 ZX= 0.0000 XY= -1.0926 YY= 27.2782 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 23.7572 Eigenvalues: 21.9516 23.7572 27.3969 5 F Isotropic = 303.7774 Anisotropy = 106.1846 XX= 286.9541 YX= 86.4922 ZX= 0.0000 XY= 46.3625 YY= 324.2025 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 300.1755 Eigenvalues: 236.5896 300.1755 374.5671 6 H Isotropic = 24.3686 Anisotropy = 4.5425 XX= 22.0702 YX= -0.4975 ZX= 0.0000 XY= -1.0926 YY= 27.2782 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 23.7572 Eigenvalues: 21.9516 23.7572 27.3969 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (BU) (AG) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AG) (AU) (BG) (BU) (AG) (AU) Virtual (BU) (BG) (AG) (BU) (AG) (BU) (AG) (AU) (AG) (BU) (BG) (BU) (BU) (AG) (AG) (BU) (BU) (BG) (AU) (AG) (AG) (BU) (AU) (BG) (AU) (AG) (BU) (AG) (BU) (BG) (AU) (BU) (AG) (BU) (AG) (BG) (AG) (BU) (AU) (BG) (AG) (BU) (BU) (AG) (BU) (AG) (AG) (BU) The electronic state is 1-AG. Alpha occ. eigenvalues -- -24.70990 -24.70990 -10.29334 -10.29229 -1.17838 Alpha occ. eigenvalues -- -1.17502 -0.79943 -0.61128 -0.53195 -0.50359 Alpha occ. eigenvalues -- -0.45944 -0.44261 -0.41754 -0.39749 -0.38046 Alpha occ. eigenvalues -- -0.28496 Alpha virt. eigenvalues -- -0.00538 0.00018 0.08706 0.11309 0.20973 Alpha virt. eigenvalues -- 0.33035 0.48524 0.50524 0.54748 0.56811 Alpha virt. eigenvalues -- 0.60418 0.63871 0.82825 0.83112 0.94235 Alpha virt. eigenvalues -- 1.01955 1.12335 1.17988 1.19227 1.25334 Alpha virt. eigenvalues -- 1.33239 1.34800 1.38454 1.44984 1.59289 Alpha virt. eigenvalues -- 1.63441 1.63772 1.75839 1.79935 1.83097 Alpha virt. eigenvalues -- 1.86586 1.87390 1.88195 1.92455 1.97669 Alpha virt. eigenvalues -- 2.09674 2.13820 2.26601 2.34862 2.44568 Alpha virt. eigenvalues -- 2.56666 2.75667 2.96626 3.07897 4.03214 Alpha virt. eigenvalues -- 4.07919 4.17245 4.35167 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.853880 0.525693 -0.022792 -0.067281 0.247207 0.348222 2 C 0.525693 4.853880 0.247207 0.348222 -0.022792 -0.067281 3 F -0.022792 0.247207 9.100651 -0.023685 0.000115 0.001310 4 H -0.067281 0.348222 -0.023685 0.547954 0.001310 0.005745 5 F 0.247207 -0.022792 0.000115 0.001310 9.100651 -0.023685 6 H 0.348222 -0.067281 0.001310 0.005745 -0.023685 0.547954 Mulliken charges: 1 1 C 0.115071 2 C 0.115071 3 F -0.302806 4 H 0.187735 5 F -0.302806 6 H 0.187735 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.302806 2 C 0.302806 3 F -0.302806 5 F -0.302806 Electronic spatial extent (au): = 317.5033 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -18.2837 YY= -26.4857 ZZ= -21.9165 XY= -2.0999 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.9450 YY= -4.2571 ZZ= 0.3121 XY= -2.0999 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -39.4470 YYYY= -251.7458 ZZZZ= -17.5855 XXXY= -11.3673 XXXZ= 0.0000 YYYX= -10.9584 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -46.3149 XXZZ= -11.0299 YYZZ= -42.1599 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -3.0295 N-N= 1.046594247851D+02 E-N=-8.647212297155D+02 KE= 2.745463971606D+02 Symmetry AG KE= 1.317865142374D+02 Symmetry BG KE= 6.126046970122D+00 Symmetry AU KE= 8.920198096509D+00 Symmetry BU KE= 1.277136378565D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C2H2F2\AVANAARTSEN\26-Jan-2019 \0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\(E)-1,2-difluoroethene\\0 ,1\C\C,1,1.309\F,2,1.49,1,120.\H,2,1.09,1,120.,3,180.,0\F,1,1.49,2,120 .,3,180.,0\H,1,1.09,2,120.,3,0.,0\\Version=EM64L-G09RevD.01\State=1-AG \HF=-277.0115862\RMSD=6.751e-09\Dipole=0.,0.,0.\Quadrupole=-0.1991627, 0.2320381,-0.0328754,0.,-3.4244667,0.\PG=C02H [SGH(C2H2F2)]\\@ IN THIS SHORT LIFE THAT ONLY LASTS AN HOUR HOW MUCH, HOW LITTLE, IS WITHIN OUR POWER.... EMILY DICKINSON BOLTS OF MELODY NO. 521 Job cpu time: 0 days 0 hours 0 minutes 4.1 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 26 15:46:13 2019.