Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324284/Gau-21983.inp" -scrdir="/scratch/webmo-13362/324284/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 21984. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ---------------------- 1-bromo-2-chloroethyne ---------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 Br 2 B2 1 A1 H 2 B3 1 A2 3 D1 0 H 2 B4 1 A3 3 D2 0 Cl 1 B5 2 A4 3 D3 0 H 1 B6 2 A5 3 D4 0 H 1 B7 2 A6 3 D5 0 Variables: B1 1.54 B2 1.91 B3 1.09 B4 1.09 B5 1.76 B6 1.09 B7 1.09 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 D1 120. D2 -120. D3 180. D4 -60. D5 60. 6 tetrahedral angles replaced. 6 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 35 0 1.800765 0.000000 2.176667 4 1 0 -0.513831 0.889981 1.903333 5 1 0 -0.513831 -0.889981 1.903333 6 17 0 -1.659344 0.000000 -0.586667 7 1 0 0.513831 0.889981 -0.363333 8 1 0 0.513831 -0.889981 -0.363333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 Br 2.825001 1.910000 0.000000 4 H 2.163046 1.090000 2.494821 0.000000 5 H 2.163046 1.090000 2.494821 1.779963 0.000000 6 Cl 1.760000 2.697431 4.428134 2.881730 2.881730 7 H 1.090000 2.163046 2.983264 2.488748 3.059760 8 H 1.090000 2.163046 2.983264 3.059760 2.488748 6 7 8 6 Cl 0.000000 7 H 2.358948 0.000000 8 H 2.358948 1.779963 0.000000 Stoichiometry C2H4BrCl Framework group CS[SG(C2BrCl),X(H4)] Deg. of freedom 11 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.918130 0.867696 0.000000 2 6 0 -0.533796 0.354363 0.000000 3 35 0 -0.533796 -1.555637 0.000000 4 1 0 -1.047627 0.717696 0.889981 5 1 0 -1.047627 0.717696 -0.889981 6 17 0 0.918130 2.627696 0.000000 7 1 0 1.431961 0.504363 0.889981 8 1 0 1.431961 0.504363 -0.889981 --------------------------------------------------------------------- Rotational constants (GHZ): 28.6634287 1.0034468 0.9815311 Standard basis: 6-31G(d) (6D, 7F) There are 62 symmetry adapted cartesian basis functions of A' symmetry. There are 25 symmetry adapted cartesian basis functions of A" symmetry. There are 62 symmetry adapted basis functions of A' symmetry. There are 25 symmetry adapted basis functions of A" symmetry. 87 basis functions, 207 primitive gaussians, 87 cartesian basis functions 34 alpha electrons 34 beta electrons nuclear repulsion energy 291.6960585411 Hartrees. NAtoms= 8 NActive= 8 NUniq= 6 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.06D-03 NBF= 62 25 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 62 25 ExpMin= 1.43D-01 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") Virtual (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=11177899. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -3110.52535947 A.U. after 13 cycles NFock= 13 Conv=0.61D-08 -V/T= 2.0057 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 87 NBasis= 87 NAE= 34 NBE= 34 NFC= 0 NFV= 0 NROrb= 87 NOA= 34 NOB= 34 NVA= 53 NVB= 53 **** Warning!!: The largest alpha MO coefficient is 0.19678397D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=11137935. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 6.01D-14 3.33D-08 XBig12= 2.55D+00 7.27D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 6.01D-14 3.33D-08 XBig12= 4.10D-03 2.93D-02. 3 vectors produced by pass 2 Test12= 6.01D-14 3.33D-08 XBig12= 1.80D-05 2.13D-03. 3 vectors produced by pass 3 Test12= 6.01D-14 3.33D-08 XBig12= 4.28D-08 5.99D-05. 3 vectors produced by pass 4 Test12= 6.01D-14 3.33D-08 XBig12= 7.63D-11 3.03D-06. 2 vectors produced by pass 5 Test12= 6.01D-14 3.33D-08 XBig12= 3.01D-13 2.51D-07. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 17 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 144.9806 Anisotropy = 54.3152 XX= 144.1154 YX= 16.7506 ZX= 0.0000 XY= 5.8810 YY= 177.7371 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 113.0894 Eigenvalues: 113.0894 140.6617 181.1908 2 C Isotropic = 151.0507 Anisotropy = 47.8426 XX= 152.4301 YX= 14.8983 ZX= 0.0000 XY= 5.8834 YY= 179.4076 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 121.3144 Eigenvalues: 121.3144 148.8919 182.9458 3 Br Isotropic = 2454.1127 Anisotropy = 841.2926 XX= 2247.9184 YX= 34.0074 ZX= 0.0000 XY= 56.0608 YY= 3012.3305 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 2102.0894 Eigenvalues: 2102.0894 2245.2744 3014.9745 4 H Isotropic = 29.2171 Anisotropy = 8.9811 XX= 27.4319 YX= -0.7974 ZX= -4.6351 XY= -0.2243 YY= 32.8403 ZY= 3.7228 XZ= -4.1986 YZ= 2.7361 ZZ= 27.3790 Eigenvalues: 22.5959 29.8508 35.2045 5 H Isotropic = 29.2171 Anisotropy = 8.9811 XX= 27.4319 YX= -0.7974 ZX= 4.6351 XY= -0.2243 YY= 32.8403 ZY= -3.7228 XZ= 4.1986 YZ= -2.7361 ZZ= 27.3790 Eigenvalues: 22.5959 29.8508 35.2045 6 Cl Isotropic = 856.0093 Anisotropy = 334.7893 XX= 805.1385 YX= 26.2809 ZX= 0.0000 XY= 42.5766 YY= 1074.8771 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 688.0123 Eigenvalues: 688.0123 800.8135 1079.2021 7 H Isotropic = 29.0310 Anisotropy = 6.3274 XX= 28.0588 YX= 0.4823 ZX= 4.5676 XY= 0.7491 YY= 32.0670 ZY= -2.9079 XZ= 4.4154 YZ= -1.4178 ZZ= 26.9673 Eigenvalues: 22.5520 31.2918 33.2493 8 H Isotropic = 29.0310 Anisotropy = 6.3274 XX= 28.0588 YX= 0.4823 ZX= -4.5676 XY= 0.7491 YY= 32.0670 ZY= 2.9079 XZ= -4.4154 YZ= 1.4178 ZZ= 26.9673 Eigenvalues: 22.5520 31.2918 33.2493 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A") Virtual (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A") (A") (A") (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -482.91178-101.54782 -61.87454 -56.39535 -56.39156 Alpha occ. eigenvalues -- -56.39144 -10.26081 -10.25635 -9.46515 -8.58671 Alpha occ. eigenvalues -- -7.22904 -7.21928 -7.21901 -6.54072 -6.52791 Alpha occ. eigenvalues -- -6.52758 -2.65645 -2.65283 -2.65256 -2.64235 Alpha occ. eigenvalues -- -2.64235 -0.88525 -0.81899 -0.71124 -0.62975 Alpha occ. eigenvalues -- -0.50627 -0.45655 -0.43750 -0.41533 -0.38806 Alpha occ. eigenvalues -- -0.31314 -0.30876 -0.28615 -0.28556 Alpha virt. eigenvalues -- 0.00228 0.03388 0.10958 0.12076 0.12791 Alpha virt. eigenvalues -- 0.15462 0.16441 0.27524 0.37270 0.39469 Alpha virt. eigenvalues -- 0.42377 0.42756 0.44525 0.45309 0.45394 Alpha virt. eigenvalues -- 0.46105 0.50370 0.50440 0.51109 0.54956 Alpha virt. eigenvalues -- 0.57189 0.58073 0.67395 0.75735 0.77219 Alpha virt. eigenvalues -- 0.83192 0.84115 0.84667 0.87857 0.89101 Alpha virt. eigenvalues -- 0.90214 0.95712 0.97703 1.05402 1.13411 Alpha virt. eigenvalues -- 1.21599 1.49401 1.52581 1.56965 1.58118 Alpha virt. eigenvalues -- 1.86766 1.95447 1.96658 2.18965 2.23476 Alpha virt. eigenvalues -- 2.23705 2.25732 2.54262 4.05597 4.24332 Alpha virt. eigenvalues -- 4.36248 8.60148 72.82980 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.218862 0.327071 -0.049016 -0.040194 -0.040194 0.210812 2 C 0.327071 5.109380 0.241416 0.372356 0.372356 -0.059120 3 Br -0.049016 0.241416 34.988216 -0.039141 -0.039141 0.005927 4 H -0.040194 0.372356 -0.039141 0.533854 -0.033605 0.003198 5 H -0.040194 0.372356 -0.039141 -0.033605 0.533854 0.003198 6 Cl 0.210812 -0.059120 0.005927 0.003198 0.003198 16.979205 7 H 0.371870 -0.038553 0.002933 -0.005572 0.005194 -0.044662 8 H 0.371870 -0.038553 0.002933 0.005194 -0.005572 -0.044662 7 8 1 C 0.371870 0.371870 2 C -0.038553 -0.038553 3 Br 0.002933 0.002933 4 H -0.005572 0.005194 5 H 0.005194 -0.005572 6 Cl -0.044662 -0.044662 7 H 0.533312 -0.033337 8 H -0.033337 0.533312 Mulliken charges: 1 1 C -0.371080 2 C -0.286353 3 Br -0.114126 4 H 0.203911 5 H 0.203911 6 Cl -0.053895 7 H 0.208816 8 H 0.208816 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.046551 2 C 0.121470 3 Br -0.114126 6 Cl -0.053895 Electronic spatial extent (au): = 991.5540 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0371 Y= -0.1876 Z= 0.0000 Tot= 0.1913 Quadrupole moment (field-independent basis, Debye-Ang): XX= -43.3608 YY= -49.1087 ZZ= -43.1590 XY= -2.5166 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.8487 YY= -3.8992 ZZ= 2.0505 XY= -2.5166 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -12.5681 YYY= -52.9393 ZZZ= 0.0000 XYY= -9.2071 XXY= -13.2618 XXZ= 0.0000 XZZ= -4.1355 YZZ= -12.0222 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -204.8039 YYYY= -847.3312 ZZZZ= -59.4182 XXXY= -151.5258 XXXZ= 0.0000 YYYX= -151.7960 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -186.8355 XXZZ= -41.4551 YYZZ= -159.1999 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -50.3705 N-N= 2.916960585411D+02 E-N=-7.992433338435D+03 KE= 3.092786301569D+03 Symmetry A' KE= 2.665813672342D+03 Symmetry A" KE= 4.269726292267D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C2H4Br1Cl1\AVANAARTSEN\26-Jan- 2019\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\1-bromo-2-chloroethyn e\\0,1\C\C,1,1.54\Br,2,1.91,1,109.47122063\H,2,1.09,1,109.47122063,3,1 20.,0\H,2,1.09,1,109.47122063,3,-120.,0\Cl,1,1.76,2,109.47122063,3,180 .,0\H,1,1.09,2,109.47122063,3,-60.,0\H,1,1.09,2,109.47122063,3,60.,0\\ Version=EM64L-G09RevD.01\State=1-A'\HF=-3110.5253595\RMSD=6.110e-09\Di pole=0.064736,0.,0.0383597\Quadrupole=-1.2480753,1.5244827,-0.2764074, 0.,-2.7982651,0.\PG=CS [SG(C2Br1Cl1),X(H4)]\\@ I LOVE MANKIND - IT'S PEOPLE I CAN'T STAND. -- LINUS OF PEANUTS Job cpu time: 0 days 0 hours 0 minutes 11.7 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 26 15:55:19 2019.