Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324292/Gau-23447.inp" -scrdir="/scratch/webmo-13362/324292/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 23448. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------- 2-Bromobutane ------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 C 3 B3 2 A2 1 D1 0 H 4 B4 3 A3 2 D2 0 H 4 B5 3 A4 2 D3 0 H 4 B6 3 A5 2 D4 0 H 3 B7 2 A6 1 D5 0 H 3 B8 2 A7 1 D6 0 Br 2 B9 1 A8 3 D7 0 H 2 B10 1 A9 3 D8 0 H 1 B11 2 A10 3 D9 0 H 1 B12 2 A11 3 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.54 B2 1.54 B3 1.54 B4 1.09 B5 1.09 B6 1.09 B7 1.09 B8 1.09 B9 1.91 B10 1.09 B11 1.09 B12 1.09 B13 1.09 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 A7 109.47122 A8 109.47122 A9 109.47122 A10 109.47122 A11 109.47122 A12 109.47122 D1 180. D2 180. D3 -60. D4 60. D5 -60. D6 60. D7 120. D8 -120. D9 180. D10 -60. D11 60. 12 tetrahedral angles replaced. 12 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 6 0 1.451926 0.000000 2.053333 4 6 0 1.451926 0.000000 3.593333 5 1 0 2.479588 0.000000 3.956667 6 1 0 0.938095 0.889981 3.956667 7 1 0 0.938095 -0.889981 3.956667 8 1 0 1.965757 -0.889981 1.690000 9 1 0 1.965757 0.889981 1.690000 10 35 0 -0.900383 1.559508 2.176667 11 1 0 -0.513831 -0.889981 1.903333 12 1 0 -1.027662 0.000000 -0.363333 13 1 0 0.513831 0.889981 -0.363333 14 1 0 0.513831 -0.889981 -0.363333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 C 2.514809 1.540000 0.000000 4 C 3.875582 2.514809 1.540000 0.000000 5 H 4.669429 3.462461 2.163046 1.090000 0.000000 6 H 4.162607 2.740870 2.163046 1.090000 1.779963 7 H 4.162607 2.740870 2.163046 1.090000 1.779963 8 H 2.740870 2.163046 1.090000 2.163046 2.488748 9 H 2.740870 2.163046 1.090000 2.163046 2.488748 10 Br 2.825001 1.910000 2.825001 3.157905 4.126096 11 H 2.163046 1.090000 2.163046 2.740870 3.737486 12 H 1.090000 2.163046 3.462461 4.669429 5.564459 13 H 1.090000 2.163046 2.740870 4.162607 4.828941 14 H 1.090000 2.163046 2.740870 4.162607 4.828941 6 7 8 9 10 6 H 0.000000 7 H 1.779963 0.000000 8 H 3.059760 2.488748 0.000000 9 H 2.488748 3.059760 1.779963 0.000000 10 Br 2.645121 3.542372 3.801526 2.983264 0.000000 11 H 3.080996 2.514809 2.488748 3.059760 2.494821 12 H 4.828941 4.828941 3.737486 3.737486 2.983264 13 H 4.340783 4.691553 3.080996 2.514809 2.983264 14 H 4.691553 4.340783 2.514809 3.080996 3.801526 11 12 13 14 11 H 0.000000 12 H 2.488748 0.000000 13 H 3.059760 1.779963 0.000000 14 H 2.488748 1.779963 1.779963 0.000000 Stoichiometry C4H9Br Framework group C1[X(C4H9Br)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.136581 2.138978 -0.032355 2 6 0 -0.437043 0.693169 0.404631 3 6 0 -1.694953 0.187113 -0.325553 4 6 0 -1.995415 -1.258696 0.111434 5 1 0 -2.885755 -1.616878 -0.405385 6 1 0 -1.148355 -1.897389 -0.138885 7 1 0 -2.164801 -1.285153 1.187867 8 1 0 -2.542014 0.825807 -0.075234 9 1 0 -1.525567 0.213571 -1.401986 10 35 0 1.047256 -0.426009 -0.034001 11 1 0 -0.606429 0.666711 1.481064 12 1 0 0.753758 2.497160 0.484463 13 1 0 0.032805 2.165436 -1.108789 14 1 0 -0.983641 2.777672 0.217963 --------------------------------------------------------------------- Rotational constants (GHZ): 3.8403481 2.4608146 1.6026074 Standard basis: 6-31G(d) (6D, 7F) There are 108 symmetry adapted cartesian basis functions of A symmetry. There are 108 symmetry adapted basis functions of A symmetry. 108 basis functions, 231 primitive gaussians, 108 cartesian basis functions 34 alpha electrons 34 beta electrons nuclear repulsion energy 346.7553497774 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 108 RedAO= T EigKep= 7.42D-04 NBF= 108 NBsUse= 108 1.00D-06 EigRej= -1.00D+00 NBFU= 108 ExpMin= 1.43D-01 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=18430701. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. EnCoef did 100 forward-backward iterations Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -2729.56078490 A.U. after 14 cycles NFock= 14 Conv=0.28D-08 -V/T= 2.0063 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 108 NBasis= 108 NAE= 34 NBE= 34 NFC= 0 NFV= 0 NROrb= 108 NOA= 34 NOB= 34 NVA= 74 NVB= 74 **** Warning!!: The largest alpha MO coefficient is 0.19739817D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in canonical form, NReq=20279378. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 8.39D-14 3.33D-08 XBig12= 5.36D+00 5.95D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 8.39D-14 3.33D-08 XBig12= 5.49D-03 2.85D-02. 3 vectors produced by pass 2 Test12= 8.39D-14 3.33D-08 XBig12= 1.11D-05 1.52D-03. 3 vectors produced by pass 3 Test12= 8.39D-14 3.33D-08 XBig12= 2.10D-08 3.94D-05. 3 vectors produced by pass 4 Test12= 8.39D-14 3.33D-08 XBig12= 4.45D-11 1.98D-06. 3 vectors produced by pass 5 Test12= 8.39D-14 3.33D-08 XBig12= 7.66D-14 6.74D-08. InvSVY: IOpt=1 It= 1 EMax= 2.22D-16 Solved reduced A of dimension 18 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 160.1109 Anisotropy = 41.7661 XX= 152.7184 YX= 1.7032 ZX= -2.5631 XY= -0.9167 YY= 187.1194 ZY= -3.1457 XZ= -4.3048 YZ= -9.2948 ZZ= 140.4949 Eigenvalues: 138.8665 153.5113 187.9550 2 C Isotropic = 133.8953 Anisotropy = 37.7133 XX= 152.8523 YX= -5.6173 ZX= -3.7758 XY= -10.8588 YY= 142.3667 ZY= 6.9976 XZ= -4.8637 YZ= 15.1044 ZZ= 106.4669 Eigenvalues: 103.2611 139.3873 159.0375 3 C Isotropic = 152.9518 Anisotropy = 30.2493 XX= 168.5114 YX= 4.2800 ZX= 7.3839 XY= 8.9207 YY= 145.4586 ZY= 1.7507 XZ= 9.5553 YZ= 4.3399 ZZ= 144.8854 Eigenvalues: 141.7622 143.9752 173.1180 4 C Isotropic = 173.5573 Anisotropy = 21.8755 XX= 171.6641 YX= 8.2508 ZX= 1.1284 XY= 10.1070 YY= 180.8853 ZY= -3.9872 XZ= -1.1345 YZ= -9.1070 ZZ= 168.1225 Eigenvalues: 162.9468 169.5841 188.1410 5 H Isotropic = 31.3218 Anisotropy = 10.6177 XX= 34.0866 YX= 4.3153 ZX= 3.0134 XY= 4.9079 YY= 31.3800 ZY= 1.2451 XZ= 2.7217 YZ= 0.7997 ZZ= 28.4988 Eigenvalues: 26.9081 28.6571 38.4003 6 H Isotropic = 30.3212 Anisotropy = 5.4009 XX= 33.5678 YX= 1.4703 ZX= -1.2523 XY= -0.1931 YY= 32.7551 ZY= 1.3637 XZ= -0.6594 YZ= 1.4495 ZZ= 24.6408 Eigenvalues: 24.2851 32.7568 33.9218 7 H Isotropic = 31.6398 Anisotropy = 8.9376 XX= 30.2690 YX= 2.3899 ZX= -3.0312 XY= 2.0269 YY= 30.0575 ZY= -2.9719 XZ= -3.0154 YZ= -2.1598 ZZ= 34.5930 Eigenvalues: 27.9356 29.3857 37.5983 8 H Isotropic = 30.6087 Anisotropy = 8.2816 XX= 35.0594 YX= -2.6470 ZX= -0.3537 XY= -1.9869 YY= 31.0607 ZY= 0.0677 XZ= -0.3243 YZ= -0.0477 ZZ= 25.7060 Eigenvalues: 25.6926 30.0038 36.1298 9 H Isotropic = 30.9040 Anisotropy = 6.2283 XX= 29.7496 YX= 0.9740 ZX= 2.5797 XY= 0.8687 YY= 29.1024 ZY= -1.5553 XZ= 1.8086 YZ= -1.7945 ZZ= 33.8600 Eigenvalues: 27.3460 30.3098 35.0562 10 Br Isotropic = 2394.1098 Anisotropy = 891.9123 XX= 2598.9389 YX= -412.2131 ZX= -229.5072 XY= -373.6644 YY= 2331.9866 ZY= 126.3319 XZ= -253.5591 YZ= 169.3591 ZZ= 2251.4040 Eigenvalues: 2046.6273 2146.9841 2988.7180 11 H Isotropic = 28.8630 Anisotropy = 8.7339 XX= 27.6151 YX= -1.9728 ZX= -3.4360 XY= -1.6477 YY= 27.0221 ZY= 2.2920 XZ= -2.8679 YZ= 2.2800 ZZ= 31.9518 Eigenvalues: 25.4477 26.4558 34.6857 12 H Isotropic = 30.5910 Anisotropy = 9.2952 XX= 30.6534 YX= 2.3830 ZX= 2.6685 XY= 3.9218 YY= 34.2227 ZY= 2.1728 XZ= 1.7518 YZ= 1.4191 ZZ= 26.8968 Eigenvalues: 25.8593 29.1259 36.7878 13 H Isotropic = 30.8845 Anisotropy = 6.9664 XX= 28.1698 YX= -0.0018 ZX= -0.9957 XY= 0.5040 YY= 32.3121 ZY= -3.7524 XZ= -0.7929 YZ= -2.6431 ZZ= 32.1715 Eigenvalues: 27.8964 29.2282 35.5287 14 H Isotropic = 31.0359 Anisotropy = 10.2660 XX= 30.4256 YX= -3.0403 ZX= -1.1502 XY= -4.2932 YY= 35.8417 ZY= 1.3325 XZ= -0.6675 YZ= 0.9754 ZZ= 26.8404 Eigenvalues: 26.6102 28.6176 37.8799 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -482.89357 -61.85585 -56.37622 -56.37255 -56.37247 Alpha occ. eigenvalues -- -10.24023 -10.19092 -10.18534 -10.17132 -8.56729 Alpha occ. eigenvalues -- -6.52062 -6.50849 -6.50836 -2.63647 -2.63295 Alpha occ. eigenvalues -- -2.63286 -2.62318 -2.62318 -0.83889 -0.74822 Alpha occ. eigenvalues -- -0.72122 -0.63328 -0.57629 -0.47868 -0.44429 Alpha occ. eigenvalues -- -0.43159 -0.42265 -0.38179 -0.36592 -0.35140 Alpha occ. eigenvalues -- -0.34272 -0.33248 -0.27015 -0.26610 Alpha virt. eigenvalues -- 0.02558 0.09008 0.12140 0.12711 0.15747 Alpha virt. eigenvalues -- 0.16165 0.17442 0.17736 0.18487 0.19633 Alpha virt. eigenvalues -- 0.21922 0.22074 0.23920 0.31438 0.42704 Alpha virt. eigenvalues -- 0.43358 0.45413 0.46547 0.47554 0.50540 Alpha virt. eigenvalues -- 0.51998 0.53753 0.55646 0.57069 0.61186 Alpha virt. eigenvalues -- 0.63339 0.64761 0.70153 0.72106 0.74848 Alpha virt. eigenvalues -- 0.80051 0.82915 0.86022 0.88846 0.89785 Alpha virt. eigenvalues -- 0.91129 0.91405 0.93352 0.93397 0.95043 Alpha virt. eigenvalues -- 0.97720 1.00023 1.05780 1.14825 1.39876 Alpha virt. eigenvalues -- 1.43609 1.46317 1.50380 1.60122 1.64244 Alpha virt. eigenvalues -- 1.69189 1.84806 1.86211 1.89245 1.93986 Alpha virt. eigenvalues -- 1.99370 2.00421 2.05862 2.17518 2.21421 Alpha virt. eigenvalues -- 2.24924 2.29013 2.33309 2.39072 2.39675 Alpha virt. eigenvalues -- 2.50976 2.63099 2.74413 4.12169 4.23538 Alpha virt. eigenvalues -- 4.35324 4.50321 8.65660 73.52946 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.129793 0.363679 -0.052049 0.005100 -0.000158 0.000223 2 C 0.363679 4.970055 0.368899 -0.051822 0.005069 -0.009514 3 C -0.052049 0.368899 5.037805 0.375022 -0.030650 -0.035331 4 C 0.005100 -0.051822 0.375022 5.095984 0.369586 0.380152 5 H -0.000158 0.005069 -0.030650 0.369586 0.574038 -0.026278 6 H 0.000223 -0.009514 -0.035331 0.380152 -0.026278 0.526333 7 H 0.000080 -0.005020 -0.038495 0.377774 -0.029227 -0.028494 8 H -0.003466 -0.032636 0.363180 -0.036464 -0.002211 0.004921 9 H -0.005289 -0.039036 0.375041 -0.037064 -0.003009 -0.003837 10 Br -0.062729 0.267210 -0.060972 -0.020840 0.000552 0.017209 11 H -0.044606 0.370542 -0.046215 -0.004424 -0.000074 -0.000056 12 H 0.371101 -0.031457 0.005284 -0.000188 0.000003 0.000001 13 H 0.377025 -0.034515 -0.006880 0.000032 0.000000 0.000008 14 H 0.357466 -0.029129 -0.003021 -0.000018 -0.000006 -0.000010 7 8 9 10 11 12 1 C 0.000080 -0.003466 -0.005289 -0.062729 -0.044606 0.371101 2 C -0.005020 -0.032636 -0.039036 0.267210 0.370542 -0.031457 3 C -0.038495 0.363180 0.375041 -0.060972 -0.046215 0.005284 4 C 0.377774 -0.036464 -0.037064 -0.020840 -0.004424 -0.000188 5 H -0.029227 -0.002211 -0.003009 0.000552 -0.000074 0.000003 6 H -0.028494 0.004921 -0.003837 0.017209 -0.000056 0.000001 7 H 0.575191 -0.003948 0.005236 -0.000046 0.005803 0.000001 8 H -0.003948 0.594725 -0.033039 0.005584 -0.002396 -0.000073 9 H 0.005236 -0.033039 0.579044 -0.000364 0.005960 -0.000022 10 Br -0.000046 0.005584 -0.000364 35.034000 -0.044874 0.000151 11 H 0.005803 -0.002396 0.005960 -0.044874 0.589435 -0.003165 12 H 0.000001 -0.000073 -0.000022 0.000151 -0.003165 0.552315 13 H 0.000010 -0.000164 0.005555 -0.000167 0.005380 -0.027341 14 H -0.000005 0.003714 -0.000128 0.005766 -0.001667 -0.027704 13 14 1 C 0.377025 0.357466 2 C -0.034515 -0.029129 3 C -0.006880 -0.003021 4 C 0.000032 -0.000018 5 H 0.000000 -0.000006 6 H 0.000008 -0.000010 7 H 0.000010 -0.000005 8 H -0.000164 0.003714 9 H 0.005555 -0.000128 10 Br -0.000167 0.005766 11 H 0.005380 -0.001667 12 H -0.027341 -0.027704 13 H 0.547007 -0.028100 14 H -0.028100 0.574427 Mulliken charges: 1 1 C -0.436171 2 C -0.112327 3 C -0.251616 4 C -0.452829 5 H 0.142367 6 H 0.174673 7 H 0.141140 8 H 0.142273 9 H 0.150953 10 Br -0.140481 11 H 0.170357 12 H 0.161095 13 H 0.162150 14 H 0.148417 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.035490 2 C 0.058030 3 C 0.041610 4 C 0.005351 10 Br -0.140481 Electronic spatial extent (au): = 774.1622 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -1.4879 Y= 1.0760 Z= 0.2703 Tot= 1.8559 Quadrupole moment (field-independent basis, Debye-Ang): XX= -44.9651 YY= -44.5066 ZZ= -44.5308 XY= -0.8315 XZ= -0.3712 YZ= 0.7552 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.2976 YY= 0.1609 ZZ= 0.1367 XY= -0.8315 XZ= -0.3712 YZ= 0.7552 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 32.1773 YYY= -11.6235 ZZZ= -0.3102 XYY= 11.9549 XXY= -4.5671 XXZ= -1.1134 XZZ= 9.6505 YZZ= -3.3993 YYZ= -0.4443 XYZ= -0.0554 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -489.1195 YYYY= -402.0975 ZZZZ= -85.0531 XXXY= -21.4466 XXXZ= -1.1583 YYYX= -20.0064 YYYZ= 4.0702 ZZZX= -2.4327 ZZZY= -0.0657 XXYY= -145.8781 XXZZ= -97.4728 YYZZ= -81.1611 XXYZ= 4.3002 YYXZ= -0.4066 ZZXY= -4.1027 N-N= 3.467553497774D+02 E-N=-7.191976413192D+03 KE= 2.712361413830D+03 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C4H9Br1\AVANAARTSEN\26-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\2-Bromobutane\\0,1\C\C,1 ,1.54\C,2,1.54,1,109.47122063\C,3,1.54,2,109.47122063,1,180.,0\H,4,1.0 9,3,109.47122063,2,180.,0\H,4,1.09,3,109.47122063,2,-60.,0\H,4,1.09,3, 109.47122063,2,60.,0\H,3,1.09,2,109.47122063,1,-60.,0\H,3,1.09,2,109.4 7122063,1,60.,0\Br,2,1.91,1,109.47122063,3,120.,0\H,2,1.09,1,109.47122 063,3,-120.,0\H,1,1.09,2,109.47122063,3,180.,0\H,1,1.09,2,109.47122063 ,3,-60.,0\H,1,1.09,2,109.47122063,3,60.,0\\Version=EM64L-G09RevD.01\St ate=1-A\HF=-2729.5607849\RMSD=2.775e-09\Dipole=0.3955907,-0.5591412,-0 .2530422\Quadrupole=-0.3742789,0.7641583,-0.3898795,0.0379386,-0.16942 26,0.5849989\PG=C01 [X(C4H9Br1)]\\@ "TIGER, TIGER BURNING BRIGHT IN THE FOREST OF THE NIGHT. WHAT IMMORTAL HAND OR EYE CAN FRAME THY FEARFUL SYMMETRYE?" - WILLIAM BLAKE Job cpu time: 0 days 0 hours 0 minutes 29.0 seconds. File lengths (MBytes): RWF= 7 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 26 18:21:12 2019.