Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324294/Gau-23558.inp" -scrdir="/scratch/webmo-13362/324294/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 23559. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ----------------------- 1-Bromo-2-methylpropane ----------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 H 3 B3 2 A2 1 D1 0 H 3 B4 2 A3 1 D2 0 H 3 B5 2 A4 1 D3 0 C 2 B6 1 A5 3 D4 0 Br 7 B7 2 A6 1 D5 0 H 7 B8 2 A7 1 D6 0 H 7 B9 2 A8 1 D7 0 H 2 B10 1 A9 3 D8 0 H 1 B11 2 A10 3 D9 0 H 1 B12 2 A11 3 D10 0 H 1 B13 2 A12 3 D11 0 Variables: B1 1.54 B2 1.54 B3 1.09 B4 1.09 B5 1.09 B6 1.54 B7 1.91 B8 1.09 B9 1.09 B10 1.09 B11 1.09 B12 1.09 B13 1.09 A1 109.47122 A2 109.47122 A3 109.47122 A4 109.47122 A5 109.47122 A6 109.47122 A7 109.47122 A8 109.47122 A9 109.47122 A10 109.47122 A11 109.47122 A12 109.47122 D1 180. D2 -60. D3 60. D4 120. D5 180. D6 -60. D7 60. D8 -120. D9 180. D10 -60. D11 60. 12 tetrahedral angles replaced. 12 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 6 0 1.451926 0.000000 2.053333 4 1 0 1.451926 0.000000 3.143333 5 1 0 1.965757 -0.889981 1.690000 6 1 0 1.965757 0.889981 1.690000 7 6 0 -0.725963 1.257405 2.053333 8 35 0 -0.725963 1.257405 3.963333 9 1 0 -0.212132 2.147386 1.690000 10 1 0 -1.753625 1.257405 1.690000 11 1 0 -0.513831 -0.889981 1.903333 12 1 0 -1.027662 0.000000 -0.363333 13 1 0 0.513831 0.889981 -0.363333 14 1 0 0.513831 -0.889981 -0.363333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 C 2.514809 1.540000 0.000000 4 H 3.462461 2.163046 1.090000 0.000000 5 H 2.740870 2.163046 1.090000 1.779963 0.000000 6 H 2.740870 2.163046 1.090000 1.779963 1.779963 7 C 2.514809 1.540000 2.514809 2.740870 3.462461 8 Br 4.220912 2.825001 3.157905 2.645121 4.126096 9 H 2.740870 2.163046 2.740870 3.080996 3.737486 10 H 2.740870 2.163046 3.462461 3.737486 4.294772 11 H 2.163046 1.090000 2.163046 2.488748 2.488748 12 H 1.090000 2.163046 3.462461 4.294772 3.737486 13 H 1.090000 2.163046 2.740870 3.737486 3.080996 14 H 1.090000 2.163046 2.740870 3.737486 2.514809 6 7 8 9 10 6 H 0.000000 7 C 2.740870 0.000000 8 Br 3.542372 1.910000 0.000000 9 H 2.514809 1.090000 2.494821 0.000000 10 H 3.737486 1.090000 2.494821 1.779963 0.000000 11 H 3.059760 2.163046 2.983264 3.059760 2.488748 12 H 3.737486 2.740870 4.515765 3.080996 2.514809 13 H 2.514809 2.740870 4.515765 2.514809 3.080996 14 H 3.080996 3.462461 4.986823 3.737486 3.737486 11 12 13 14 11 H 0.000000 12 H 2.488748 0.000000 13 H 3.059760 1.779963 0.000000 14 H 2.488748 1.779963 1.779963 0.000000 Stoichiometry C4H9Br Framework group C1[X(C4H9Br)] Deg. of freedom 36 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -2.747540 -0.647330 -0.051949 2 6 0 -1.382512 -0.003264 -0.357691 3 6 0 -1.371310 1.446678 0.161101 4 1 0 -0.405154 1.902543 -0.055301 5 1 0 -2.159870 2.015108 -0.332013 6 1 0 -1.540978 1.448639 1.237813 7 6 0 -0.268400 -0.806367 0.339001 8 35 0 1.424588 -0.007557 -0.040198 9 1 0 -0.438068 -0.804405 1.415713 10 1 0 -0.276329 -1.832624 -0.028196 11 1 0 -1.212845 -0.005225 -1.434403 12 1 0 -2.755468 -1.673587 -0.419146 13 1 0 -2.917207 -0.645369 1.024763 14 1 0 -3.536099 -0.078900 -0.545063 --------------------------------------------------------------------- Rotational constants (GHZ): 7.6861237 1.4867284 1.3148758 Standard basis: 6-31G(d) (6D, 7F) There are 108 symmetry adapted cartesian basis functions of A symmetry. There are 108 symmetry adapted basis functions of A symmetry. 108 basis functions, 231 primitive gaussians, 108 cartesian basis functions 34 alpha electrons 34 beta electrons nuclear repulsion energy 335.3509083578 Hartrees. NAtoms= 14 NActive= 14 NUniq= 14 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 108 RedAO= T EigKep= 7.46D-04 NBF= 108 NBsUse= 108 1.00D-06 EigRej= -1.00D+00 NBFU= 108 ExpMin= 1.43D-01 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=18430336. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. EnCoef did 100 forward-backward iterations Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -2729.55872010 A.U. after 14 cycles NFock= 14 Conv=0.27D-08 -V/T= 2.0063 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 108 NBasis= 108 NAE= 34 NBE= 34 NFC= 0 NFV= 0 NROrb= 108 NOA= 34 NOB= 34 NVA= 74 NVB= 74 **** Warning!!: The largest alpha MO coefficient is 0.19715840D+02 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in canonical form, NReq=20279385. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 8.39D-14 3.33D-08 XBig12= 5.60D+00 6.45D-01. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 8.39D-14 3.33D-08 XBig12= 5.69D-03 2.81D-02. 3 vectors produced by pass 2 Test12= 8.39D-14 3.33D-08 XBig12= 1.03D-05 1.74D-03. 3 vectors produced by pass 3 Test12= 8.39D-14 3.33D-08 XBig12= 2.23D-08 4.33D-05. 3 vectors produced by pass 4 Test12= 8.39D-14 3.33D-08 XBig12= 5.31D-11 1.94D-06. 2 vectors produced by pass 5 Test12= 8.39D-14 3.33D-08 XBig12= 1.08D-13 1.14D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 17 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 167.6443 Anisotropy = 33.4521 XX= 182.6985 YX= 13.9064 ZX= 0.4829 XY= 12.5362 YY= 164.8125 ZY= -0.2356 XZ= -5.5032 YZ= -2.2836 ZZ= 155.4217 Eigenvalues: 155.1918 157.7953 189.9457 2 C Isotropic = 154.0963 Anisotropy = 21.8705 XX= 168.2858 YX= 3.5663 ZX= 1.6558 XY= -6.7490 YY= 144.3654 ZY= -5.5095 XZ= 2.1576 YZ= -5.3129 ZZ= 149.6376 Eigenvalues: 140.9781 152.6342 168.6766 3 C Isotropic = 167.0581 Anisotropy = 28.0128 XX= 156.7653 YX= -3.3341 ZX= -0.5501 XY= 0.8167 YY= 182.4536 ZY= 6.2362 XZ= 1.7616 YZ= 11.3258 ZZ= 161.9553 Eigenvalues: 156.3120 159.1289 185.7333 4 H Isotropic = 29.9713 Anisotropy = 5.1225 XX= 33.2457 YX= -1.0374 ZX= -1.4475 XY= 1.0139 YY= 33.0651 ZY= -0.7595 XZ= -0.7618 YZ= -0.6134 ZZ= 23.6030 Eigenvalues: 23.4296 33.0980 33.3863 5 H Isotropic = 31.3885 Anisotropy = 9.3161 XX= 31.2941 YX= -3.3122 ZX= 2.2492 XY= -4.0586 YY= 34.3032 ZY= -2.0501 XZ= 1.9454 YZ= -1.6680 ZZ= 28.5684 Eigenvalues: 27.4256 29.1408 37.5993 6 H Isotropic = 31.9559 Anisotropy = 7.4798 XX= 30.1973 YX= -1.0905 ZX= -1.5361 XY= -1.0487 YY= 31.1219 ZY= 3.4207 XZ= -1.5782 YZ= 2.8669 ZZ= 34.5483 Eigenvalues: 29.2226 29.7026 36.9424 7 C Isotropic = 143.0030 Anisotropy = 41.0386 XX= 170.2672 YX= -0.2961 ZX= 1.1859 XY= -0.4379 YY= 138.2771 ZY= -11.4780 XZ= 2.4578 YZ= -17.1781 ZZ= 120.4647 Eigenvalues: 112.4658 146.1812 170.3620 8 Br Isotropic = 2482.3325 Anisotropy = 770.4786 XX= 2846.3262 YX= 257.3688 ZX= -146.5457 XY= 227.1870 YY= 2305.0602 ZY= -133.0685 XZ= -167.5453 YZ= -158.4126 ZZ= 2295.6112 Eigenvalues: 2147.3145 2303.6981 2995.9849 9 H Isotropic = 29.7135 Anisotropy = 8.9672 XX= 31.4195 YX= 1.9373 ZX= -2.5677 XY= 2.0879 YY= 25.6470 ZY= -3.7123 XZ= -2.0841 YZ= -3.3457 ZZ= 32.0742 Eigenvalues: 23.9639 29.4850 35.6917 10 H Isotropic = 29.1144 Anisotropy = 9.3904 XX= 30.5470 YX= 1.9981 ZX= -0.1686 XY= 2.0251 YY= 34.4808 ZY= 1.5587 XZ= -0.4311 YZ= 0.3953 ZZ= 22.3155 Eigenvalues: 22.2112 29.7574 35.3747 11 H Isotropic = 30.5343 Anisotropy = 6.2544 XX= 30.3093 YX= -0.0395 ZX= 0.7208 XY= 0.5790 YY= 26.7368 ZY= 0.4612 XZ= 0.4122 YZ= 1.0041 ZZ= 34.5568 Eigenvalues: 26.6558 30.2432 34.7039 12 H Isotropic = 31.3139 Anisotropy = 9.2432 XX= 31.2979 YX= 4.1230 ZX= 1.0425 XY= 2.5735 YY= 34.8305 ZY= 2.8348 XZ= 0.4703 YZ= 1.9853 ZZ= 27.8133 Eigenvalues: 27.0400 29.4256 37.4760 13 H Isotropic = 31.7430 Anisotropy = 7.2855 XX= 32.5126 YX= 1.1833 ZX= -3.3819 XY= 1.6151 YY= 29.1008 ZY= -1.2868 XZ= -2.8178 YZ= -0.8089 ZZ= 33.6156 Eigenvalues: 28.5991 30.0299 36.6000 14 H Isotropic = 31.0698 Anisotropy = 9.4954 XX= 36.1683 YX= -1.6424 ZX= 3.4732 XY= -0.3415 YY= 28.9790 ZY= -1.0424 XZ= 2.7131 YZ= -0.8956 ZZ= 28.0620 Eigenvalues: 26.8357 28.9736 37.4000 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -482.89408 -61.85666 -56.37712 -56.37347 -56.37336 Alpha occ. eigenvalues -- -10.23409 -10.19908 -10.18175 -10.17092 -8.56843 Alpha occ. eigenvalues -- -6.52208 -6.50956 -6.50942 -2.63786 -2.63427 Alpha occ. eigenvalues -- -2.63415 -2.62417 -2.62416 -0.83515 -0.76743 Alpha occ. eigenvalues -- -0.68756 -0.65972 -0.57014 -0.47932 -0.44623 Alpha occ. eigenvalues -- -0.43572 -0.41281 -0.39261 -0.37420 -0.34770 Alpha occ. eigenvalues -- -0.33938 -0.33066 -0.26925 -0.26637 Alpha virt. eigenvalues -- 0.02266 0.08917 0.11839 0.13700 0.14898 Alpha virt. eigenvalues -- 0.15585 0.16565 0.17227 0.19106 0.20658 Alpha virt. eigenvalues -- 0.22184 0.22611 0.23864 0.31489 0.43512 Alpha virt. eigenvalues -- 0.44019 0.45259 0.46956 0.47555 0.50793 Alpha virt. eigenvalues -- 0.51009 0.52344 0.53992 0.56773 0.60828 Alpha virt. eigenvalues -- 0.62821 0.66909 0.70262 0.71431 0.75427 Alpha virt. eigenvalues -- 0.80512 0.81005 0.84590 0.88377 0.89613 Alpha virt. eigenvalues -- 0.90753 0.92033 0.93878 0.94404 0.96415 Alpha virt. eigenvalues -- 0.96763 1.00843 1.04579 1.10596 1.41996 Alpha virt. eigenvalues -- 1.44112 1.47277 1.51264 1.60264 1.65990 Alpha virt. eigenvalues -- 1.73957 1.78070 1.79138 1.91493 1.92744 Alpha virt. eigenvalues -- 1.99963 2.06422 2.10811 2.14172 2.19286 Alpha virt. eigenvalues -- 2.22984 2.24424 2.26341 2.46618 2.46674 Alpha virt. eigenvalues -- 2.48916 2.68904 2.70581 4.13202 4.26975 Alpha virt. eigenvalues -- 4.29153 4.54772 8.64120 73.25903 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.117588 0.359201 -0.056190 0.005412 -0.003310 -0.005991 2 C 0.359201 4.925512 0.387086 -0.032236 -0.032921 -0.037496 3 C -0.056190 0.387086 5.124781 0.372175 0.371590 0.373666 4 H 0.005412 -0.032236 0.372175 0.531007 -0.025580 -0.027924 5 H -0.003310 -0.032921 0.371590 -0.025580 0.572377 -0.029893 6 H -0.005991 -0.037496 0.373666 -0.027924 -0.029893 0.578740 7 C -0.048303 0.362719 -0.057738 -0.007997 0.005717 -0.006297 8 Br 0.005668 -0.056252 -0.019661 0.015570 0.000458 0.000126 9 H -0.003570 -0.034779 -0.008180 0.000059 -0.000093 0.006092 10 H -0.002374 -0.036879 0.005745 0.000101 -0.000162 0.000007 11 H -0.041742 0.382563 -0.043653 -0.002701 -0.003680 0.005654 12 H 0.370249 -0.034147 0.005740 -0.000208 -0.000016 -0.000010 13 H 0.373759 -0.034155 -0.006277 -0.000020 -0.000306 0.005682 14 H 0.373473 -0.027609 -0.004200 -0.000039 0.004076 -0.000289 7 8 9 10 11 12 1 C -0.048303 0.005668 -0.003570 -0.002374 -0.041742 0.370249 2 C 0.362719 -0.056252 -0.034779 -0.036879 0.382563 -0.034147 3 C -0.057738 -0.019661 -0.008180 0.005745 -0.043653 0.005740 4 H -0.007997 0.015570 0.000059 0.000101 -0.002701 -0.000208 5 H 0.005717 0.000458 -0.000093 -0.000162 -0.003680 -0.000016 6 H -0.006297 0.000126 0.006092 0.000007 0.005654 -0.000010 7 C 5.094227 0.259538 0.360402 0.366243 -0.047130 -0.003766 8 Br 0.259538 35.012013 -0.040897 -0.039705 0.001813 -0.000019 9 H 0.360402 -0.040897 0.569369 -0.036141 0.006117 -0.000404 10 H 0.366243 -0.039705 -0.036141 0.564843 -0.004418 0.004902 11 H -0.047130 0.001813 0.006117 -0.004418 0.602635 -0.003165 12 H -0.003766 -0.000019 -0.000404 0.004902 -0.003165 0.575465 13 H -0.006733 0.000005 0.005644 -0.000393 0.005547 -0.030302 14 H 0.004753 -0.000191 -0.000095 -0.000114 -0.003232 -0.027688 13 14 1 C 0.373759 0.373473 2 C -0.034155 -0.027609 3 C -0.006277 -0.004200 4 H -0.000020 -0.000039 5 H -0.000306 0.004076 6 H 0.005682 -0.000289 7 C -0.006733 0.004753 8 Br 0.000005 -0.000191 9 H 0.005644 -0.000095 10 H -0.000393 -0.000114 11 H 0.005547 -0.003232 12 H -0.030302 -0.027688 13 H 0.571934 -0.028587 14 H -0.028587 0.556125 Mulliken charges: 1 1 C -0.443870 2 C -0.090606 3 C -0.444885 4 H 0.172383 5 H 0.141741 6 H 0.137933 7 C -0.275635 8 Br -0.138466 9 H 0.176476 10 H 0.178345 11 H 0.145393 12 H 0.143371 13 H 0.144201 14 H 0.153617 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.002681 2 C 0.054787 3 C 0.007173 7 C 0.079187 8 Br -0.138466 Electronic spatial extent (au): = 893.0526 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -1.7972 Y= -0.5625 Z= 0.1690 Tot= 1.8907 Quadrupole moment (field-independent basis, Debye-Ang): XX= -45.8366 YY= -44.5590 ZZ= -44.6847 XY= 0.7780 XZ= -0.0666 YZ= -0.4607 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.8098 YY= 0.4678 ZZ= 0.3420 XY= 0.7780 XZ= -0.0666 YZ= -0.4607 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 46.1431 YYY= -3.6195 ZZZ= 0.2391 XYY= 14.9722 XXY= 3.9116 XXZ= -2.9304 XZZ= 12.8302 YZZ= -0.5500 YYZ= -1.5749 XYZ= 0.1028 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -784.4152 YYYY= -221.0694 ZZZZ= -85.3435 XXXY= -1.8718 XXXZ= 0.9000 YYYX= 3.0456 YYYZ= -0.0685 ZZZX= -3.5332 ZZZY= -0.9322 XXYY= -170.0737 XXZZ= -145.6111 YYZZ= -52.4514 XXYZ= -2.4833 YYXZ= 1.2686 ZZXY= -0.0236 N-N= 3.353509083578D+02 E-N=-7.169153280445D+03 KE= 2.712394411038D+03 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C4H9Br1\AVANAARTSEN\26-Jan-201 9\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\1-Bromo-2-methylpropane\ \0,1\C\C,1,1.54\C,2,1.54,1,109.47122063\H,3,1.09,2,109.47122063,1,180. ,0\H,3,1.09,2,109.47122063,1,-60.,0\H,3,1.09,2,109.47122063,1,60.,0\C, 2,1.54,1,109.47122063,3,120.,0\Br,7,1.91,2,109.47122063,1,180.,0\H,7,1 .09,2,109.47122063,1,-60.,0\H,7,1.09,2,109.47122063,1,60.,0\H,2,1.09,1 ,109.47122063,3,-120.,0\H,1,1.09,2,109.47122063,3,180.,0\H,1,1.09,2,10 9.47122063,3,-60.,0\H,1,1.09,2,109.47122063,3,60.,0\\Version=EM64L-G09 RevD.01\State=1-A\HF=-2729.5587201\RMSD=2.736e-09\Dipole=0.0562875,-0. 1167797,-0.7324838\Quadrupole=-0.2951184,0.1941391,0.1009793,0.0886598 ,0.6023676,-0.5386871\PG=C01 [X(C4H9Br1)]\\@ WE TEND TO MEET ANY NEW SITUATION BY REORGANIZING. IT CAN BE A WONDERFUL METHOD FOR CREATING THE ILLUSION OF PROGRESS WHILE PRODUCING CONFUSION, INEFFICIENCY, AND DEMORALIZATION. -- PETRONIUS ARBITER, 210 B.C. Job cpu time: 0 days 0 hours 0 minutes 28.4 seconds. File lengths (MBytes): RWF= 7 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 26 18:23:48 2019.