Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324299/Gau-23920.inp" -scrdir="/scratch/webmo-13362/324299/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 23921. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 26-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------- C3H4FCl ------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 H 3 B3 2 A2 1 D1 0 F 3 B4 2 A3 1 D2 0 H 2 B5 1 A4 3 D3 0 H 1 B6 2 A5 3 D4 0 H 1 B7 2 A6 3 D5 0 Cl 1 B8 2 A7 3 D6 0 Variables: B1 1.54 B2 1.309 B3 1.09 B4 1.49 B5 1.09 B6 1.09 B7 1.09 B8 1.76 A1 120. A2 120. A3 120. A4 120. A5 109.47122 A6 109.47122 A7 109.47122 D1 0. D2 180. D3 180. D4 180. D5 -60. D6 60. 3 tetrahedral angles replaced. 3 tetrahedral angles replaced. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.540000 3 6 0 1.133627 0.000000 2.194500 4 1 0 2.077595 0.000000 1.649500 5 9 0 1.133627 0.000000 3.684500 6 1 0 -0.943968 0.000000 2.085000 7 1 0 -1.027662 0.000000 -0.363333 8 1 0 0.513831 0.889981 -0.363333 9 17 0 0.829672 -1.437034 -0.586667 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.540000 0.000000 3 C 2.470008 1.309000 0.000000 4 H 2.652782 2.080479 1.090000 0.000000 5 F 3.854951 2.425694 1.490000 2.243279 0.000000 6 H 2.288733 1.090000 2.080479 3.052786 2.621984 7 H 1.090000 2.163046 3.348684 3.700556 4.588695 8 H 1.090000 2.163046 2.778259 2.699800 4.190605 9 Cl 1.760000 2.697431 3.145210 2.936464 4.516671 6 7 8 9 6 H 0.000000 7 H 2.449763 0.000000 8 H 2.985227 1.779963 0.000000 9 Cl 3.514067 2.358947 2.358948 0.000000 Stoichiometry C3H4ClF Framework group C1[X(C3H4ClF)] Deg. of freedom 21 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.875598 0.940028 0.228810 2 6 0 -0.586198 0.751474 -0.217506 3 6 0 -1.313442 -0.201321 0.308592 4 1 0 -0.884368 -0.861253 1.062571 5 9 0 -2.727778 -0.383753 -0.123234 6 1 0 -1.015273 1.411406 -0.971486 7 1 0 1.316555 1.775602 -0.314765 8 1 0 0.905087 1.146489 1.298672 9 17 0 1.786603 -0.527033 -0.110897 --------------------------------------------------------------------- Rotational constants (GHZ): 11.3992807 1.6943085 1.5366337 Standard basis: 6-31G(d) (6D, 7F) There are 87 symmetry adapted cartesian basis functions of A symmetry. There are 87 symmetry adapted basis functions of A symmetry. 87 basis functions, 180 primitive gaussians, 87 cartesian basis functions 24 alpha electrons 24 beta electrons nuclear repulsion energy 201.6552806062 Hartrees. NAtoms= 9 NActive= 9 NUniq= 9 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 4.22D-03 NBF= 87 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 87 ExpMin= 1.43D-01 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=8277689. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -676.707991672 A.U. after 14 cycles NFock= 14 Conv=0.39D-08 -V/T= 2.0049 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 87 NBasis= 87 NAE= 24 NBE= 24 NFC= 0 NFV= 0 NROrb= 87 NOA= 24 NOB= 24 NVA= 63 NVB= 63 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in canonical form, NReq=9371410. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 5.04D-14 3.33D-08 XBig12= 4.33D+00 1.02D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 5.04D-14 3.33D-08 XBig12= 9.55D-03 6.10D-02. 3 vectors produced by pass 2 Test12= 5.04D-14 3.33D-08 XBig12= 3.47D-05 2.09D-03. 3 vectors produced by pass 3 Test12= 5.04D-14 3.33D-08 XBig12= 6.15D-08 5.63D-05. 3 vectors produced by pass 4 Test12= 5.04D-14 3.33D-08 XBig12= 1.13D-10 3.85D-06. 3 vectors produced by pass 5 Test12= 5.04D-14 3.33D-08 XBig12= 3.93D-13 1.89D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 18 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 153.5629 Anisotropy = 36.7618 XX= 159.6926 YX= -13.1102 ZX= 0.2573 XY= -14.5630 YY= 165.3017 ZY= 11.1355 XZ= 3.5736 YZ= 11.6675 ZZ= 135.6944 Eigenvalues: 130.2651 152.3527 178.0708 2 C Isotropic = 77.5831 Anisotropy = 118.6859 XX= 35.9724 YX= 16.2386 ZX= -65.3938 XY= -2.3535 YY= 119.1258 ZY= 34.8503 XZ= -50.9989 YZ= 58.9388 ZZ= 77.6512 Eigenvalues: -13.6247 89.6670 156.7071 3 C Isotropic = 24.6209 Anisotropy = 71.1758 XX= -3.9985 YX= 31.6286 ZX= -60.7047 XY= 35.2830 YY= 56.1429 ZY= 24.0481 XZ= -60.0565 YZ= 25.6301 ZZ= 21.7182 Eigenvalues: -66.9571 68.7483 72.0714 4 H Isotropic = 24.4332 Anisotropy = 8.2696 XX= 27.6319 YX= 4.2586 ZX= -3.4151 XY= 2.0291 YY= 23.7020 ZY= -0.8681 XZ= -1.2772 YZ= 0.5921 ZZ= 21.9656 Eigenvalues: 20.6570 22.6963 29.9463 5 F Isotropic = 249.5645 Anisotropy = 143.2768 XX= 331.7572 YX= -15.0964 ZX= 42.4669 XY= -10.6859 YY= 178.5533 ZY= 77.6504 XZ= 29.3298 YZ= 70.2638 ZZ= 238.3831 Eigenvalues: 124.0663 279.5449 345.0824 6 H Isotropic = 26.3298 Anisotropy = 3.1426 XX= 27.4955 YX= 1.9377 ZX= -0.9437 XY= -0.1752 YY= 27.1391 ZY= -1.7993 XZ= -0.3085 YZ= 0.4237 ZZ= 24.3548 Eigenvalues: 24.1390 26.4255 28.4248 7 H Isotropic = 28.9029 Anisotropy = 9.5390 XX= 27.5465 YX= 0.1315 ZX= -1.0093 XY= 0.8537 YY= 34.5740 ZY= -3.0461 XZ= -0.5566 YZ= -2.1296 ZZ= 24.5881 Eigenvalues: 23.8441 27.6023 35.2622 8 H Isotropic = 28.4602 Anisotropy = 9.0060 XX= 26.8398 YX= -1.6355 ZX= -0.1962 XY= -1.3918 YY= 27.4717 ZY= 5.8094 XZ= 0.1048 YZ= 3.7051 ZZ= 31.0692 Eigenvalues: 23.6994 27.2171 34.4642 9 Cl Isotropic = 817.0864 Anisotropy = 377.0272 XX= 920.5205 YX= -122.0544 ZX= -15.1980 XY= -122.1661 YY= 944.6500 ZY= 104.8193 XZ= 1.6816 YZ= 94.5306 ZZ= 586.0889 Eigenvalues: 558.4673 824.3542 1068.4379 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -101.54477 -24.68975 -10.27944 -10.26673 -10.21370 Alpha occ. eigenvalues -- -9.46228 -7.22636 -7.21621 -7.21608 -1.15873 Alpha occ. eigenvalues -- -0.88252 -0.79165 -0.68463 -0.58423 -0.51277 Alpha occ. eigenvalues -- -0.48411 -0.45238 -0.43960 -0.41259 -0.40783 Alpha occ. eigenvalues -- -0.37031 -0.31369 -0.30627 -0.27107 Alpha virt. eigenvalues -- -0.01555 0.04354 0.05128 0.11146 0.11999 Alpha virt. eigenvalues -- 0.14147 0.16580 0.24395 0.33804 0.39139 Alpha virt. eigenvalues -- 0.42998 0.44679 0.45667 0.49868 0.52998 Alpha virt. eigenvalues -- 0.55850 0.57987 0.58785 0.59989 0.64196 Alpha virt. eigenvalues -- 0.69636 0.77702 0.82408 0.83502 0.85574 Alpha virt. eigenvalues -- 0.87199 0.88864 0.91294 0.93106 0.98994 Alpha virt. eigenvalues -- 1.05877 1.12261 1.15985 1.21755 1.27689 Alpha virt. eigenvalues -- 1.29683 1.36739 1.41560 1.45430 1.58681 Alpha virt. eigenvalues -- 1.71350 1.74101 1.80514 1.83794 1.86432 Alpha virt. eigenvalues -- 1.88759 1.95122 2.03571 2.11091 2.13405 Alpha virt. eigenvalues -- 2.16201 2.29138 2.31625 2.42870 2.46036 Alpha virt. eigenvalues -- 2.73014 2.83628 3.04563 4.04014 4.10256 Alpha virt. eigenvalues -- 4.24214 4.30039 4.39618 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.206567 0.299481 -0.019996 -0.002454 0.001625 -0.039160 2 C 0.299481 5.119149 0.602579 -0.086589 -0.027547 0.360323 3 C -0.019996 0.602579 4.687340 0.366339 0.252894 -0.031418 4 H -0.002454 -0.086589 0.366339 0.561227 -0.024638 0.005385 5 F 0.001625 -0.027547 0.252894 -0.024638 9.117082 -0.001766 6 H -0.039160 0.360323 -0.031418 0.005385 -0.001766 0.532354 7 H 0.369361 -0.028218 0.003841 0.000091 -0.000017 -0.004475 8 H 0.368651 -0.032086 -0.008757 0.001516 -0.000009 0.003305 9 Cl 0.230740 -0.069934 -0.010956 0.004484 -0.000057 0.004064 7 8 9 1 C 0.369361 0.368651 0.230740 2 C -0.028218 -0.032086 -0.069934 3 C 0.003841 -0.008757 -0.010956 4 H 0.000091 0.001516 0.004484 5 F -0.000017 -0.000009 -0.000057 6 H -0.004475 0.003305 0.004064 7 H 0.531916 -0.033496 -0.044704 8 H -0.033496 0.538568 -0.047482 9 Cl -0.044704 -0.047482 16.983965 Mulliken charges: 1 1 C -0.414814 2 C -0.137157 3 C 0.158135 4 H 0.174641 5 F -0.317565 6 H 0.171387 7 H 0.205703 8 H 0.209791 9 Cl -0.050120 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000680 2 C 0.034230 3 C 0.332775 5 F -0.317565 9 Cl -0.050120 Electronic spatial extent (au): = 689.9001 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.8226 Y= 1.7722 Z= 0.8565 Tot= 2.1333 Quadrupole moment (field-independent basis, Debye-Ang): XX= -43.3352 YY= -32.9735 ZZ= -34.3007 XY= 1.0864 XZ= -0.0495 YZ= -1.3266 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -6.4654 YY= 3.8963 ZZ= 2.5691 XY= 1.0864 XZ= -0.0495 YZ= -1.3266 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -1.4211 YYY= -2.6071 ZZZ= 0.5917 XYY= -1.6658 XXY= 2.2121 XXZ= -0.2570 XZZ= -5.1952 YZZ= -0.4062 YYZ= -1.7115 XYZ= 2.2228 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -651.2957 YYYY= -127.9470 ZZZZ= -55.5328 XXXY= -2.1906 XXXZ= 0.4419 YYYX= 5.2742 YYYZ= -2.7028 ZZZX= 3.7838 ZZZY= -0.3738 XXYY= -115.2806 XXZZ= -108.3603 YYZZ= -29.3822 XXYZ= -0.9732 YYXZ= 0.3107 ZZXY= 2.9168 N-N= 2.016552806062D+02 E-N=-2.005210616688D+03 KE= 6.733846269206D+02 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C3H4Cl1F1\AVANAARTSEN\26-Jan-2 019\0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\C3H4FCl\\0,1\C\C,1,1.5 4\C,2,1.309,1,120.\H,3,1.09,2,120.,1,0.,0\F,3,1.49,2,120.,1,180.,0\H,2 ,1.09,1,120.,3,180.,0\H,1,1.09,2,109.47122063,3,179.9999991,0\H,1,1.09 ,2,109.47122063,3,-60.,0\Cl,1,1.76,2,109.47122063,3,60.,0\\Version=EM6 4L-G09RevD.01\State=1-A\HF=-676.7079917\RMSD=3.866e-09\Dipole=-0.35420 23,0.5819125,-0.4902468\Quadrupole=3.5155037,0.5141919,-4.0296957,-0.3 595628,-0.0263472,-2.1537877\PG=C01 [X(C3H4Cl1F1)]\\@ UPON JULIA'S CLOTHES WHENAS IN SILKS MY JULIA GOES, THEN, THEN, METHINKS, HOW SWEETLY FLOWS THAT LIQUEFACTION OF HER CLOTHES. NEXT, WHEN I CAST MINE EYES, AND SEE THAT BRAVE VIBRATION, EACH WAY FREE, O, HOW THAT GLITTERING TAKETH ME! -- ROBERT HERRICK, 1648 Job cpu time: 0 days 0 hours 0 minutes 13.2 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 26 18:41:21 2019.