Entering Gaussian System, Link 0=/share/apps/gaussian/g09/g09 Initial command: /share/apps/gaussian/g09/l1.exe "/scratch/webmo-13362/324316/Gau-2135.inp" -scrdir="/scratch/webmo-13362/324316/" Entering Link 1 = /share/apps/gaussian/g09/l1.exe PID= 2136. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64L-G09RevD.01 24-Apr-2013 27-Jan-2019 ****************************************** --------------------------------------- #N B3LYP/6-31G(d) NMR Geom=Connectivity --------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,8,3; 4//1; 5/5=2,38=5/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; -------- Acrolein -------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C C 1 B1 C 2 B2 1 A1 O 3 B3 2 A2 1 D1 0 H 3 B4 2 A3 1 D2 0 H 2 B5 1 A4 3 D3 0 H 1 B6 2 A5 3 D4 0 H 1 B7 2 A6 3 D5 0 Variables: B1 1.309 B2 1.54 B3 1.275 B4 1.09 B5 1.09 B6 1.09 B7 1.09 A1 120. A2 120. A3 120. A4 120. A5 120. A6 120. D1 -180. D2 0. D3 -180. D4 0. D5 -180. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.309000 3 6 0 1.333679 0.000000 2.079000 4 8 0 1.333679 0.000000 3.354000 5 1 0 2.277647 0.000000 1.534000 6 1 0 -0.943968 0.000000 1.854000 7 1 0 0.943968 0.000000 -0.545000 8 1 0 -0.943968 0.000000 -0.545000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.309000 0.000000 3 C 2.470008 1.540000 0.000000 4 O 3.609434 2.441460 1.275000 0.000000 5 H 2.746057 2.288733 1.090000 2.050238 0.000000 6 H 2.080479 1.090000 2.288733 2.727210 3.237468 7 H 1.090000 2.080479 2.652782 3.918428 2.470008 8 H 1.090000 2.080479 3.474630 4.515515 3.834194 6 7 8 6 H 0.000000 7 H 3.052786 0.000000 8 H 2.399000 1.887935 0.000000 Stoichiometry C3H4O Framework group CS[SG(C3H4O)] Deg. of freedom 13 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.666840 1.648600 0.000000 2 6 0 0.666840 0.339600 0.000000 3 6 0 -0.666840 -0.430400 0.000000 4 8 0 -0.666840 -1.705400 0.000000 5 1 0 -1.610807 0.114600 0.000000 6 1 0 1.610807 -0.205400 0.000000 7 1 0 -0.277128 2.193600 0.000000 8 1 0 1.610807 2.193600 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 44.5526410 4.5187098 4.1026068 Standard basis: 6-31G(d) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A' symmetry. There are 16 symmetry adapted cartesian basis functions of A" symmetry. There are 52 symmetry adapted basis functions of A' symmetry. There are 16 symmetry adapted basis functions of A" symmetry. 68 basis functions, 128 primitive gaussians, 68 cartesian basis functions 15 alpha electrons 15 beta electrons nuclear repulsion energy 101.0958324659 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 6.11D-03 NBF= 52 16 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 52 16 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=4285432. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -191.901513028 A.U. after 14 cycles NFock= 14 Conv=0.63D-08 -V/T= 2.0103 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 68 NBasis= 68 NAE= 15 NBE= 15 NFC= 0 NFV= 0 NROrb= 68 NOA= 15 NOB= 15 NVA= 53 NVB= 53 Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. Keep R3 ints in memory in symmetry-blocked form, NReq=4801079. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 3. 3 vectors produced by pass 0 Test12= 2.65D-14 3.33D-08 XBig12= 3.91D+00 1.34D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 2.65D-14 3.33D-08 XBig12= 4.66D-02 1.29D-01. 3 vectors produced by pass 2 Test12= 2.65D-14 3.33D-08 XBig12= 1.11D-04 4.89D-03. 3 vectors produced by pass 3 Test12= 2.65D-14 3.33D-08 XBig12= 1.07D-07 1.15D-04. 3 vectors produced by pass 4 Test12= 2.65D-14 3.33D-08 XBig12= 3.42D-10 9.73D-06. 3 vectors produced by pass 5 Test12= 2.65D-14 3.33D-08 XBig12= 6.74D-13 2.75D-07. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 18 with 3 vectors. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 66.0362 Anisotropy = 160.2976 XX= -41.7204 YX= -2.0981 ZX= 0.0000 XY= -29.2064 YY= 66.9277 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 172.9013 Eigenvalues: -43.9304 69.1377 172.9013 2 C Isotropic = 54.7357 Anisotropy = 131.7949 XX= -41.8701 YX= 15.3539 ZX= 0.0000 XY= 10.2562 YY= 63.4782 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 142.5990 Eigenvalues: -43.4042 65.0123 142.5990 3 C Isotropic = -12.9194 Anisotropy = 149.6400 XX= -106.9660 YX= 11.4439 ZX= 0.0000 XY= 14.7633 YY= -18.6329 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 86.8406 Eigenvalues: -108.8689 -16.7300 86.8406 4 O Isotropic = -425.1515 Anisotropy = 1157.1251 XX= -498.6158 YX= -82.7745 ZX= 0.0000 XY= 9.5224 YY= -1123.1040 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 346.2652 Eigenvalues: -1125.2447 -496.4750 346.2652 5 H Isotropic = 21.9463 Anisotropy = 1.5799 XX= 20.9840 YX= 3.4382 ZX= 0.0000 XY= -0.8634 YY= 22.1772 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 22.6776 Eigenvalues: 20.1617 22.6776 22.9995 6 H Isotropic = 25.7100 Anisotropy = 5.1981 XX= 22.6830 YX= 1.2733 ZX= 0.0000 XY= 1.0459 YY= 28.9682 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 25.4787 Eigenvalues: 22.4759 25.4787 29.1753 7 H Isotropic = 26.2915 Anisotropy = 4.0440 XX= 23.3961 YX= 1.5566 ZX= 0.0000 XY= -2.2474 YY= 28.9662 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.5122 Eigenvalues: 23.3748 26.5122 28.9875 8 H Isotropic = 26.1091 Anisotropy = 3.9342 XX= 23.6668 YX= -1.0610 ZX= 0.0000 XY= -1.2942 YY= 28.4581 ZY= 0.0000 XZ= 0.0000 YZ= 0.0000 ZZ= 26.2024 Eigenvalues: 23.3930 26.2024 28.7319 End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A") (A") (A') (A") (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -19.14957 -10.28826 -10.21467 -10.21293 -1.01104 Alpha occ. eigenvalues -- -0.80400 -0.64181 -0.57852 -0.48558 -0.46673 Alpha occ. eigenvalues -- -0.41211 -0.39114 -0.38014 -0.29412 -0.25665 Alpha virt. eigenvalues -- -0.06593 0.04550 0.10142 0.10919 0.14047 Alpha virt. eigenvalues -- 0.18448 0.25250 0.30434 0.33129 0.50360 Alpha virt. eigenvalues -- 0.50446 0.56249 0.58308 0.60678 0.61852 Alpha virt. eigenvalues -- 0.63525 0.68252 0.81688 0.82432 0.85243 Alpha virt. eigenvalues -- 0.87027 0.90094 0.94212 0.98081 1.05516 Alpha virt. eigenvalues -- 1.07374 1.15342 1.27430 1.33804 1.43852 Alpha virt. eigenvalues -- 1.51190 1.52535 1.65415 1.71284 1.78438 Alpha virt. eigenvalues -- 1.83824 1.88585 1.97865 2.06122 2.11320 Alpha virt. eigenvalues -- 2.14422 2.26211 2.37035 2.41415 2.51023 Alpha virt. eigenvalues -- 2.60747 2.79943 2.88122 2.94674 3.77405 Alpha virt. eigenvalues -- 4.03489 4.13298 4.36039 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.089352 0.531837 -0.013050 0.004433 0.010467 -0.049768 2 C 0.531837 5.076429 0.348382 -0.055806 -0.098218 0.368806 3 C -0.013050 0.348382 4.664188 0.482110 0.339163 -0.028278 4 O 0.004433 -0.055806 0.482110 8.032732 -0.045971 0.000291 5 H 0.010467 -0.098218 0.339163 -0.045971 0.647315 0.003467 6 H -0.049768 0.368806 -0.028278 0.000291 0.003467 0.544672 7 H 0.375582 -0.047100 -0.009266 0.000120 0.007572 0.005472 8 H 0.362019 -0.019744 0.003122 -0.000080 -0.000245 -0.006852 7 8 1 C 0.375582 0.362019 2 C -0.047100 -0.019744 3 C -0.009266 0.003122 4 O 0.000120 -0.000080 5 H 0.007572 -0.000245 6 H 0.005472 -0.006852 7 H 0.545370 -0.035314 8 H -0.035314 0.533639 Mulliken charges: 1 1 C -0.310871 2 C -0.104585 3 C 0.213629 4 O -0.417830 5 H 0.136451 6 H 0.162190 7 H 0.157563 8 H 0.163455 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.010147 2 C 0.057604 3 C 0.350080 4 O -0.417830 Electronic spatial extent (au): = 305.4151 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.6322 Y= 3.1472 Z= 0.0000 Tot= 3.2101 Quadrupole moment (field-independent basis, Debye-Ang): XX= -21.0206 YY= -26.7978 ZZ= -24.4487 XY= -1.5349 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.0684 YY= -2.7088 ZZ= -0.3597 XY= -1.5349 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.4487 YYY= 8.2709 ZZZ= 0.0000 XYY= 4.4053 XXY= 1.6886 XXZ= 0.0000 XZZ= -1.8733 YZZ= -3.8165 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -100.6139 YYYY= -256.8400 ZZZZ= -22.8287 XXXY= -46.5068 XXXZ= 0.0000 YYYX= -51.1458 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -57.9257 XXZZ= -23.0647 YYZZ= -47.0243 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -16.7687 N-N= 1.010958324659D+02 E-N=-6.495023244240D+02 KE= 1.899433576672D+02 Symmetry A' KE= 1.841896274965D+02 Symmetry A" KE= 5.753730170726D+00 1\1\GINC-COMPUTE-0-5\SP\RB3LYP\6-31G(d)\C3H4O1\AVANAARTSEN\27-Jan-2019 \0\\#N B3LYP/6-31G(d) NMR Geom=Connectivity\\Acrolein\\0,1\C\C,1,1.309 \C,2,1.54,1,120.\O,3,1.275,2,120.,1,-180.,0\H,3,1.09,2,120.,1,0.,0\H,2 ,1.09,1,120.,3,-180.,0\H,1,1.09,2,120.,3,0.,0\H,1,1.09,2,120.,3,-180., 0\\Version=EM64L-G09RevD.01\State=1-A'\HF=-191.901513\RMSD=6.317e-09\D ipole=-0.2487333,0.,-1.2382068\Quadrupole=2.2813036,-0.2674051,-2.0138 985,0.,-1.141141,0.\PG=CS [SG(C3H4O1)]\\@ WE LEARN WISDOM FROM FAILURE MUCH MORE THAN FROM SUCCESS. WE DISCOVER WHAT WILL DO BY FINDING OUT WHAT WILL NOT DO... AND HE WHO NEVER MADE A MISTAKE NEVER MADE A DISCOVERY Job cpu time: 0 days 0 hours 0 minutes 7.2 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sun Jan 27 12:53:47 2019.