Entering Gaussian System, Link 0=/share/apps/gaussian/g16/g16 Initial command: /share/apps/gaussian/g16/l1.exe "/scratch/webmo-1704971/33227/Gau-1480206.inp" -scrdir="/scratch/webmo-1704971/33227/" Entering Link 1 = /share/apps/gaussian/g16/l1.exe PID= 1480208. Copyright (c) 1988-2019, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 16 program. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019. ****************************************** Gaussian 16: ES64L-G16RevC.01 3-Jul-2019 18-Mar-2023 ****************************************** ---------------------------------------------------------------------- #N B3LYP/6-311+G(2d,p) SP GFINPUT POP=(FULL,NBORead) Geom=Connectivity ---------------------------------------------------------------------- 1/38=1,57=2,172=1/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=112,11=2,24=10,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=3,28=1,40=2/1,7; 99/5=1,9=1/99; - H - Symbolic Z-matrix: Charge = 0 Multiplicity = 2 H Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Stoichiometry H(2) Framework group OH[O(H)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: 6-311+G(2d,p) (5D, 7F) AO basis set in the form of general basis input (Overlap normalization): 1 0 S 3 1.00 0.000000000000 0.3386500000D+02 0.2549381454D-01 0.5094790000D+01 0.1903731086D+00 0.1158790000D+01 0.8521614860D+00 S 1 1.00 0.000000000000 0.3258400000D+00 0.1000000000D+01 S 1 1.00 0.000000000000 0.1027410000D+00 0.1000000000D+01 P 1 1.00 0.000000000000 0.7500000000D+00 0.1000000000D+01 **** There are 3 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 0 symmetry adapted cartesian basis functions of B2G symmetry. There are 0 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 1 symmetry adapted cartesian basis functions of B1U symmetry. There are 1 symmetry adapted cartesian basis functions of B2U symmetry. There are 1 symmetry adapted cartesian basis functions of B3U symmetry. There are 3 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 0 symmetry adapted basis functions of B2G symmetry. There are 0 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 1 symmetry adapted basis functions of B1U symmetry. There are 1 symmetry adapted basis functions of B2U symmetry. There are 1 symmetry adapted basis functions of B3U symmetry. 6 basis functions, 8 primitive gaussians, 6 cartesian basis functions 1 alpha electrons 0 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 6 RedAO= T EigKep= 1.09D-01 NBF= 3 0 0 0 0 1 1 1 NBsUse= 6 1.00D-06 EigRej= -1.00D+00 NBFU= 3 0 0 0 0 1 1 1 ExpMin= 1.03D-01 ExpMax= 3.39D+01 ExpMxC= 3.39D+01 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) Virtual (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Virtual (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) The electronic state of the initial guess is 2-A1G. Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7500 S= 0.5000 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=847878. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(UB3LYP) = -0.502155930090 A.U. after 6 cycles NFock= 6 Conv=0.80D-11 -V/T= 2.0077 = 0.0000 = 0.0000 = 0.5000 = 0.7500 S= 0.5000 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7500, after 0.7500 ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) Virtual (A1G) (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Virtual (A1G) (A1G) (T1U) (T1U) (T1U) (A1G) The electronic state is 2-A1G. Alpha occ. eigenvalues -- -0.32170 Alpha virt. eigenvalues -- 0.24504 1.25319 1.25319 1.25319 2.14455 Beta virt. eigenvalues -- 0.02946 0.46427 1.58489 1.58489 1.58489 Beta virt. eigenvalues -- 2.56407 Alpha Molecular Orbital Coefficients: 1 2 3 4 5 (A1G)--O (A1G)--V (T1U)--V (T1U)--V (T1U)--V Eigenvalues -- -0.32170 0.24504 1.25319 1.25319 1.25319 1 1 H 1S 0.24961 -0.14153 0.00000 0.00000 0.00000 2 2S 0.46705 -1.27355 0.00000 0.00000 0.00000 3 3S 0.41465 1.52890 0.00000 0.00000 0.00000 4 4PX 0.00000 0.00000 0.00000 0.00000 1.00000 5 4PY 0.00000 0.00000 0.00000 1.00000 0.00000 6 4PZ 0.00000 0.00000 1.00000 0.00000 0.00000 6 (A1G)--V Eigenvalues -- 2.14455 1 1 H 1S -1.53186 2 2S 1.92231 3 3S -0.84496 4 4PX 0.00000 5 4PY 0.00000 6 4PZ 0.00000 Beta Molecular Orbital Coefficients: 1 2 3 4 5 (A1G)--V (A1G)--V (T1U)--V (T1U)--V (T1U)--V Eigenvalues -- 0.02946 0.46427 1.58489 1.58489 1.58489 1 1 H 1S 0.14589 0.10521 0.00000 0.00000 0.00000 2 2S 0.03897 1.49563 0.00000 0.00000 0.00000 3 3S 0.90288 -1.34753 0.00000 0.00000 0.00000 4 4PX 0.00000 0.00000 0.00000 0.00000 1.00000 5 4PY 0.00000 0.00000 0.00000 1.00000 0.00000 6 4PZ 0.00000 0.00000 1.00000 0.00000 0.00000 6 (A1G)--V Eigenvalues -- 2.56407 1 1 H 1S -1.54809 2 2S 1.81574 3 3S -0.76967 4 4PX 0.00000 5 4PY 0.00000 6 4PZ 0.00000 Alpha Density Matrix: 1 2 3 4 5 1 1 H 1S 0.06231 2 2S 0.11658 0.21813 3 3S 0.10350 0.19366 0.17193 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 6 4PZ 0.00000 Beta Density Matrix: 1 2 3 4 5 1 1 H 1S 0.00000 2 2S 0.00000 0.00000 3 3S 0.00000 0.00000 0.00000 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 6 4PZ 0.00000 Full Mulliken population analysis: 1 2 3 4 5 1 1 H 1S 0.06231 2 2S 0.08235 0.21813 3 3S 0.03867 0.15279 0.17193 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 6 4PZ 0.00000 Gross orbital populations: Total Alpha Beta Spin 1 1 H 1S 0.18333 0.18333 0.00000 0.18333 2 2S 0.45327 0.45327 0.00000 0.45327 3 3S 0.36340 0.36340 0.00000 0.36340 4 4PX 0.00000 0.00000 0.00000 0.00000 5 4PY 0.00000 0.00000 0.00000 0.00000 6 4PZ 0.00000 0.00000 0.00000 0.00000 Condensed to atoms (all electrons): 1 1 H 1.000000 Atomic-Atomic Spin Densities. 1 1 H 1.000000 Mulliken charges and spin densities: 1 2 1 H -0.000000 1.000000 Sum of Mulliken charges = -0.00000 1.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 Electronic spatial extent (au): = 3.1014 Charge= -0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.3905 YY= -1.3905 ZZ= -1.3905 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1.7999 YYYY= -1.7999 ZZZZ= -1.7999 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.6000 XXZZ= -0.6000 YYZZ= -0.6000 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-9.978323604473D-01 KE= 4.983405022539D-01 Symmetry AG KE= 4.983405022539D-01 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 0.000000000000D+00 Symmetry B3G KE= 0.000000000000D+00 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 0.000000000000D+00 Symmetry B2U KE= 0.000000000000D+00 Symmetry B3U KE= 0.000000000000D+00 Symmetry AG SP= 1.000000000000D+00 Symmetry B1G SP= 0.000000000000D+00 Symmetry B2G SP= 0.000000000000D+00 Symmetry B3G SP= 0.000000000000D+00 Symmetry AU SP= 0.000000000000D+00 Symmetry B1U SP= 0.000000000000D+00 Symmetry B2U SP= 0.000000000000D+00 Symmetry B3U SP= 0.000000000000D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1G)--O -0.321701 0.498341 2 (A1G)--V 0.245045 0.631079 3 (T1U)--V 1.253194 1.875000 4 (T1U)--V 1.253194 1.875000 5 (T1U)--V 1.253194 1.875000 6 (A1G)--V 2.144549 3.764211 Orbital energies and kinetic energies (beta): 1 2 1 (A1G)--V 0.029460 0.222694 2 (A1G)--V 0.464268 0.796088 3 (T1U)--V 1.584887 1.875000 4 (T1U)--V 1.584887 1.875000 5 (T1U)--V 1.584887 1.875000 6 (A1G)--V 2.564070 3.874848 Total kinetic energy from orbitals= 4.983405022539D-01 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 H(1) 0.29705 1327.75600 473.77636 442.89173 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 1 H(1) Bbb 0.0000 0.000 0.000 0.000 -0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 --------------------------------------------------------------------------------- ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set /AOPNAO / : Write the AO to PNAO transformation to LFN 32 /AOPNHO / : Write the AO to PNHO transformation to LFN 34 /AOPNBO / : Write the AO to PNBO transformation to LFN 36 /DMNAO / : Write the NAO density matrix to LFN 82 /DMNHO / : Write the NHO density matrix to LFN 84 /DMNBO / : Write the NBO density matrix to LFN 86 /FNAO / : Write the NAO Fock matrix to LFN 92 /FNHO / : Write the NHO Fock matrix to LFN 94 /FNBO / : Write the NBO Fock matrix to LFN 96 /FILE / : Set to NBODATA Analyzing the SCF density Job title: H Storage needed: 186 in NPA, 242 in NBO ( 104857591 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy -------------------------------------------- 1 H 1 S Val( 1S) 1.00000 2 H 1 S Ryd( 3S) 0.00000 3 H 1 S Ryd( 2S) 0.00000 4 H 1 px Ryd( 2p) 0.00000 5 H 1 py Ryd( 2p) 0.00000 6 H 1 pz Ryd( 2p) 0.00000 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- H 1 -0.00000 0.00000 1.00000 0.00000 1.00000 ======================================================================= * Total * -0.00000 0.00000 1.00000 0.00000 1.00000 Natural Population -------------------------------------------------------- Valence 1.00000 (100.0000% of 1) Natural Minimal Basis 1.00000 (100.0000% of 1) Natural Rydberg Basis 0.00000 ( 0.0000% of 1) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- H 1 1S( 1.00) *************************************************** ******* Alpha spin orbitals ******* *************************************************** NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 H 1 S Val( 1S) 1.00000 -0.32170 2 H 1 S Ryd( 3S) 0.00000 2.00205 3 H 1 S Ryd( 2S) 0.00000 0.38754 4 H 1 px Ryd( 2p) 0.00000 1.25319 5 H 1 py Ryd( 2p) 0.00000 1.25319 6 H 1 pz Ryd( 2p) 0.00000 1.25319 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- H 1 -0.50000 0.00000 1.00000 0.00000 1.00000 ======================================================================= * Total * -0.50000 0.00000 1.00000 0.00000 1.00000 Natural Population -------------------------------------------------------- Valence 1.00000 (100.0000% of 1) Natural Minimal Basis 1.00000 (100.0000% of 1) Natural Rydberg Basis 0.00000 ( 0.0000% of 1) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- H 1 1S( 1.00) NATURAL BOND ORBITAL ANALYSIS, alpha spin orbitals: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 0.90 1.00000 -0.00000 0 0 0 1 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Valence Lewis 1.00000 (100.000% of 1) ================== ============================ Total Lewis 1.00000 (100.000% of 1) ----------------------------------------------------- Valence non-Lewis 0.00000 ( 0.000% of 1) Rydberg non-Lewis -0.00000 ( -0.000% of 1) ================== ============================ Total non-Lewis -0.00000 ( -0.000% of 1) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (1.00000) LP ( 1) H 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2. (0.00000) RY*( 1) H 1 s(100.00%) 3. (0.00000) RY*( 2) H 1 s(100.00%) 4. (0.00000) RY*( 3) H 1 s( 0.00%)p 1.00(100.00%) 5. (0.00000) RY*( 4) H 1 s( 0.00%)p 1.00(100.00%) 6. (0.00000) RY*( 5) H 1 s( 0.00%)p 1.00(100.00%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== None exceeding thresholds Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.25 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 None above threshold Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (H) 1. LP ( 1) H 1 1.00000 -0.32170 2. RY*( 1) H 1 0.00000 2.00205 3. RY*( 2) H 1 0.00000 0.38754 4. RY*( 3) H 1 0.00000 1.25319 5. RY*( 4) H 1 0.00000 1.25319 6. RY*( 5) H 1 0.00000 1.25319 ------------------------------- Total Lewis 1.00000 (100.0000%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis -0.00000 ( -0.0000%) ------------------------------- Total unit 1 1.00000 (100.0000%) Charge unit 1 -0.50000 *************************************************** ******* Beta spin orbitals ******* *************************************************** NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 H 1 S Val( 1S) 0.00000 0.08824 2 H 1 S Ryd( 3S) 0.00000 2.45613 3 H 1 S Ryd( 2S) 0.00000 0.51344 4 H 1 px Ryd( 2p) 0.00000 1.58489 5 H 1 py Ryd( 2p) 0.00000 1.58489 6 H 1 pz Ryd( 2p) 0.00000 1.58489 WARNING: Population inversion found on atom H 1 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- H 1 0.50000 0.00000 0.00000 0.00000 0.00000 ======================================================================= * Total * 0.50000 0.00000 0.00000 0.00000 0.00000 Natural Population -------------------------------------------------------- Natural Minimal Basis 0.00000 ( 0.0000% of 0) Atom No Natural Electron Configuration ---------------------------------------------------------------------------- H 1 NATURAL BOND ORBITAL ANALYSIS, beta spin orbitals: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 0.90 0.00000 0.00000 0 0 0 0 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (0.00000) LP*( 1) H 1 s(100.00%) 2. (0.00000) RY*( 1) H 1 s(100.00%) 3. (0.00000) RY*( 2) H 1 s(100.00%) 4. (0.00000) RY*( 3) H 1 s( 0.00%)p 1.00(100.00%) 5. (0.00000) RY*( 4) H 1 s( 0.00%)p 1.00(100.00%) 6. (0.00000) RY*( 5) H 1 s( 0.00%)p 1.00(100.00%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== None exceeding thresholds Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.25 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 None above threshold Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (H) 1. LP*( 1) H 1 0.00000 0.08824 2. RY*( 1) H 1 0.00000 2.45613 3. RY*( 2) H 1 0.00000 0.51344 4. RY*( 3) H 1 0.00000 1.58489 5. RY*( 4) H 1 0.00000 1.58489 6. RY*( 5) H 1 0.00000 1.58489 ------------------------------- Total Lewis 0.00000 ( 0.0000%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis 0.00000 ( 0.0000%) ------------------------------- Total unit 1 0.00000 (100.0000%) Charge unit 1 0.50000 Unable to Open any file for archive entry. 1\1\GINC-COMPUTE-0-0\SP\UB3LYP\6-311+G(2d,p)\H1(2)\BESSELMAN\18-Mar-20 23\0\\#N B3LYP/6-311+G(2d,p) SP GFINPUT POP=(FULL,NBORead) Geom=Connec tivity\\H\\0,2\H\\Version=ES64L-G16RevC.01\State=2-A1G\HF=-0.5021559\S 2=0.75\S2-1=0.\S2A=0.75\RMSD=8.047e-12\Dipole=0.,0.,0.\Quadrupole=0.,0 .,0.,0.,0.,0.\PG=OH [O(H1)]\\@ The archive entry for this job was punched. ON THE SURVIVAL OF THE FITTEST - "STRONG REPRESENTATIVES FROM EACH PAST ERA THRIVE TODAY, SUCH AS PROGRAMMING IN THE THIRTY YEAR OLD LANGUAGE KNOWN AS FORTRAN, AND EVEN IN THE ANCIENT SCRIPT KNOWN AS DIRECT MACHINE CODE. SOME PEOPLE MIGHT LOOK ON SUCH RELICS AS LIVING FOSSILS; OTHERS WOULD POINT OUT THAT EVEN A VERY OLD SPECIES MIGHT STILL BE FILLING A PARTICULAR ECOLOGICAL NICHE." -- ALAN KAY, SCI.AM. SEPTEMBER 1984 Job cpu time: 0 days 0 hours 0 minutes 1.5 seconds. Elapsed time: 0 days 0 hours 0 minutes 1.5 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 16 at Sat Mar 18 13:59:31 2023.