CHEM 344 - Molecular Modeling

The Use of Computational Chemistry to Support Experimental
Organic Chemistry
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* all calculation data obtained from Gaussian09 using B3LYP/6-31G(d) unless otherwise noted.



Computational Chemistry

Organic chemists routinely use computational chemistry to:
» predict geometries, physical properties, and relative energies.

visualize electronic structures (molecular and atomic orbitals).
« predict or explain regio-/stereochemical outcomes of reactions.
* understand stabilizing/destabilizing interactions.

* predict spectra for microwave, IR, UV/Vis, NMR, etc.

* find transition states and chemical pathways for reactions.



Molecular Structure & Charge Distribution

From a good geometry, computational chemistry can predict dipole
moments and charges on atoms within molecules. (NPA charges
from NBO calculations)
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o-type Molecular Orbitals

o-type molecular orbitals have their electron density along the axis of a bond
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HOMO = Highest Occupied Molecular Orbital
Frontier Orbitals

LUMO = Lowest Unoccupied Molecular Orbital



nt-type Molecular Orbitals

| | n-type molecular orbitals have their electron
C H density in symmetric lobes perpendicular to a
molecular plane.

—— LUMO +1

Three p orbitals predicted by NBO



Optimization and Natural Bond
Orbitals of Water
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p lone pair ~sp lone pair

VSEPR predicts a tetrahedral electron

geometry, which requires two identical
GA‘ lone pairs. This is not the case.
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http://en.wikipedia.org/wiki/VSEPR_theory



Energy

Geometry Optimization of Anisole

A

-217598.9427 kcal/mol

3.2 kcal/mol Starting
Geometry

Optimized

Equilibrium

Geometry local
minimum

Optimization makes small changes in the
geometry to lower the energy.

A good starting guess will likely lead to a
local correct structure.
maximum
Absolute energies are big and negative.

Relative energies make more sense.

0.0 kcal/mol local
minimum
-217602.1219 kcal/mol




Geometry Optimization of Anisole
and Natural Bond Orbitals

ahisole

O-atom lone pairs

O-atom p-lone pair conjugated with w-system!

n, MO in benzene n;, MO in anisole

Lone pairs with the same (or similar) symmetry as a © system conjugate.
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Other Conformational Isomers of
Anisole?
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A Potential Energy Surface for the
Decomposition of Diazirinone

At the transition state the motion
corresponds to a negative or
imaginary vibrational mode.

Transition State
117.3 kcal/mol

Reactant
91.8 kcal/mol

level of theory/basis set Products
CCSD(T)/cc-pVTZ with ZPVE 0.0 kcal/mol 11



Geometry Optimization of Urea —
when clean-up goes wrong

Urea was the first organic molecule to be synthesized from
inorganic constituents.

The synthesis of urea helped to dispel the widely-held belief
in vitalism; the belief that organic molecules which are the
molecules of life must possess a “vital force”.

The synthesis was reported in 1828 by Friedrich Wohler .

O

O=

NH, Cl + AgOCN —» HZN/ \NHZ

Urea
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Geometry Optimization of Urea —
when clean-up goes wrong

Vibrational Modes 1 . .
Mode Symmetry Frequency {cm™”) IR (Raman) Intensity Actions

1 A2 -442 9687 0.0000 je =]
2 B1 -329.7550 561.5441 Fe ]
3 A2 371.3026 0.0000 je =]
4 Al 4777139 3.4137 Fe ]

When submitted planar (C,,)... it has TWO negative vibrational modes.

This is not a minimum on the potential energy surface (PES) and therefore is not the
correct structure of urea.

ALWAYS CHECK YOUR WORK!

Garbage in, garbage out.
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Geometry Optimization of Urea —
getting the correct structure

Bad Structure negative vibrational
modes will indicate how to get to

the correct structure. FT‘—-éJ Sy

Conclusion: urea is not planar.

a .
g
i Vibrational Modes 1 . .
Mode Symmetry Freguency (cm™') IR (Raman) Intensity Actions

1 A 395.3773 70.1787 P B
2 B 457 1367 70.0816 P B
3 A 471.8405 2.8197 P B
4 B 555.1135 110.0660 P B

When submitted nonplanar (C,)... it has ZERO negative vibrational modes.

This is the correct structure! ALWAYS CHECK YOUR WORK! 14



Geometry Optimization of Urea —

when clean-up goes wrong

4 sp? orbitals 3 sp? orbitals and 1 p orbital

An sp3 hybridized nitrogen atom minimizes electron-electron repulsion.
An sp? hybridized nitrogen atom maximizes the ability to overlap with an adjacent &t system.

Many nitrogen atoms exist somewhere between these two extremes.



Geometry Optimization & Natural
Bond Orbitals of Urea

Urea has a conjugated n system which is
responsible for its increased planarity.

Slightly twisted m system, but good
conjugation.

Matural Hybrid Orbitals

O-lone pairs p and ~sp 21 LP(1)02 5(59.44%)p0.68(40.51%)d0.00(0.05%) 1.975348831 -0.659850538 Hartree 2 (4
22 LP(2)02 5(0.00%)p1.00(99.79%)d0.00(0.21%) ~ 1.848747053 -0.226456252 Hartree 2 (4

. R 23 LP{1IMN3 s(10.77%)p8.28(89.17%)d0.01{0.07%) 1.832070455 -0295371587 Hart I
N-lone pairs not sp3, but ~sp? N SI0770p8 28E0 10 10 07 oMege &

24 LP(1)N6 S(10.77%)p8.28(89.17%)d0.01(0.07%) 1.832070455 -0.295371587 Hartree 2 (4
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Potential Energy Surface

_ o 1¥ A3.0kcal/mol energy difference in the two
Q_‘;(Nlph transition states is a sufficient difference to
Mﬂ/ produce only one observable product.
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Basicity of Urea — Which atom is most
basic, oxygen or nitrogen?

H

12.1 kcal/mol

Breaking m-conjugation greatly increases the relative energy and
results in a huge difference in the basicity (many factors of ten)
between the nitrogen and oxygen atom:s.

0.0 kcal/mol
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Chapter 5 Goals

Students have read all of chapter 5 and are familiar with key
computational concepts and procedures.

Students should be able complete all of the calculations
necessary in chapter 5 using WebMO/Gaussian09.

Students should be able to use computational chemistry to help
understand organic chemistry and explain chemical phenomena.

Students should feel comfortable completing calculations

independently and have a clear understanding of where/how to
get help.
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Energy

1,3-butadiene — Electronic Structure

Recall the 1t systems of conjugated dienes like 1,3-butadiene.

* Four p atomic orbitals create four nt

LUMO+1 —— molecular orbitals.

* Asthe energy of the orbital increases
so does the number of nodes.

* Lowest energy orbitals are filled first.

* HOMO = Highest energy Occupied
Molecular Orbital

Tl « LUMO = Lowest energy Unoccupied

HOMO-1 ——— Molecular Orbital

* In WebMO red/blue is occupied,
/green is unoccupied.
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Frost Circles for Hydrocarbons

The engergy distribution of cylic conjugated systems can be predicted by Frost circles,
which help to explain the Hiickel rule. (Works well for monocyclic hydrocarbon molecules.)
* Place a polygon, in the shape of the molecule, vertex down on a circle.

* Place an orbital at each intersection of the polygon and circle.

* Fill in the electrons as usual.

* If all the electrons are paired and at a lower energy, the species is likely aromatic.

Energy
|
Energy
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Benzene — Electronic Structure

Cylic Conjugated systems, like benzene, are slightly more complicated.

Energy

A

Six atomic p orbitals create
six molecular m orbitals.

T, and T, are degenerate
(equal in energy) and have a
node.

* *
m, and m. are degenerate
and have two nodes.

This delocalized 7t system of
three largely stabilizing
molecular orbitals is the
source of benzene’s
stability.
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Cyclopentadienyl Anion — Electronic
Structure

Energy
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Aromatic lons

tropylium cation
C7H7+

Energy

@ planar
y 2all have p orbital
6me

aromatic
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Aromatic Heterocycles

Aromatic molecules

* have enhanced stability, lowered reactivity compared to alkenes
e are planar and cyclic or polycyclic

* have a p orbital at every atom in the ring

* have a diatropic ring current (Chapter 13 & 16)

* have 4n+2 1 electrons (Hickel’s Rule)

pyridine § pyridazine
) sp? J
(D‘ﬁs ~sp? N-atom lone pair ~sp? N-atom lone pairs
Planar Planar
all have p orbital all have p orbital
6bme 6me

i ridazine t; MO
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Aromatic Heterocycles

Aromatic molecules

* have enhanced stability, lowered reactivity compared to alkenes
e are planar and cyclic or polycyclic

* have a p orbital at every atom in the ring

* have a diatropic ring current (Chapter 13 & 16)

* have 4n+2 1 electrons (Hickel’s Rule)

furan thlophene
sp? ~s?
P \ ~sp? O-atom lone pair p\
0.0 () 0 ~s2p S-atom lone pair
pIanar pIanar
all have p orbital all have p orbital
6T e furan t; MO 6T e

aromatic aromatic thiopnene ©; MO

27



Aromatic Heterocycles

Aromatic molecules

* have enhanced stability, lowered reactivity compared to alkenes
e are planar and cyclic or polycyclic

* have a p orbital at every atom in the ring

* have a diatropic ring current (Chapter 13 & 16)

* have 4n+2 1 electrons (Hickel’s Rule)

J

J imidazole J

p ~J

2 N- H H P
Zi’or': Ib/ 'KD/ ~sp? N-atom lone pair
p N-atom lone pair sp?
M before bonding (\ /

pyrrole

()
planar J planar
all have p orbital <9 all have p orbital | idazole 1t system
6me 6Tme
aromatic aromatic

pyrrole m system
28



Cyclobutadiene — Potential Energy
Surface — Triplet Aromaticity




