WebMO Job Summary

262014: C8H8O3 vanillin 7 C1, Optimize + Vib Freq - Gaussian

Calculated Quantities

Expand all

Overview

Quantity Value
Route #N B3LYP/6-311+G(2d,p) OPT FREQ
Method B3LYP
Stoichiometry C8H8O3
Symmetry C1
Basis 6-311+G(2d,p)
RB3LYP Energy -535.480506623 Hartree
ZPE 0.145329 Hartree
Conditions 298.150K, 1.00000 atm
Internal Energy -535.324744 Hartree
Enthalpy -535.323800 Hartree
Free Energy -535.371646 Hartree
Cv 38.087 cal/mol-K
Entropy 100.702 cal/mol-K
Dipole Moment 4.1386 Debye
Server class (262959)
CPU time 28888.1 sec

Geometry Sequence Energies

Step Energy (au)  
0 -535.479097154  
1 -535.479726276  
2 -535.479071449  
3 -535.479862916  
4 -535.480001682  
5 -535.480044563  
6 -535.480300077  
7 -535.480410632  
8 -535.480469941  
9 -535.480476966  
10 -535.480481353  
11 -535.480483350  
12 -535.480484893  
13 -535.480487321  
14 -535.480487814  
15 -535.480488110  
16 -535.480488268  
17 -535.480490107  
18 -535.477594394  
19 -535.474056241  
20 -535.472272651  
21 -535.476671950  
22 -535.479096073  
23 -535.480490111  
24 -535.478841309  
25 -535.457153572  
26 -535.457258964  
27 -535.480490137  
28 -535.466510566  
29 -535.477518485  
30 -535.480490147  
31 -535.478739803  
32 -535.480248131  
33 -535.480490962  
34 -535.479138248  
35 -535.479182677  
36 -535.480492057  
37 -535.480496704  
38 -535.480500229  
39 -535.480501855  
40 -535.480505750  
41 -535.480506577  
42 -535.480506620  
43 -535.480506626  
44 -535.480506623  
45 -535.480506623  
46 -535.480506623  
Animation speed  
Loop  

Rotational Constants

Constant Frequency (GHz) Frequency (cm-1)
a 2.75565 0.09191858989
b 0.65079 0.02170801775
c 0.54093 0.01804348260

Partial Charges

Atom Symbol Charge
1 C -0.163740  
2 O -0.418901  
3 C 0.359877  
4 C 0.171986  
5 C -0.700576  
6 C 0.698302  
7 C -0.196027  
8 C -0.063716  
9 H 0.102560  
10 H 0.120741  
11 C 0.120321  
12 O -0.407699  
13 H 0.074818  
14 H 0.077950  
15 O -0.449411  
16 H 0.283357  
17 H 0.126689  
18 H 0.119223  
19 H 0.144248  

Vibrational Modes

Mode Symmetry Frequency (cm-1) IR Intensity Actions
1 A 41.4033 3.4216
2 A 83.0658 1.3677
3 A 130.3019 8.3414
4 A 152.8978 2.5041
5 A 192.7662 5.5909
6 A 249.0895 4.1890
7 A 258.4103 9.8382
8 A 303.9503 43.9118
9 A 314.2787 45.7271
10 A 365.9861 6.8695
11 A 416.8794 8.4475
12 A 441.0776 16.6500
13 A 498.8059 4.8710
14 A 582.6278 9.0897
15 A 601.2649 8.2676
16 A 661.7126 23.4357
17 A 741.5991 4.0585
18 A 763.4157 3.1435
19 A 794.0819 52.6521
20 A 856.0511 29.2843
21 A 864.8231 16.3886
22 A 965.8792 22.3120
23 A 977.6111 1.5224
24 A 1021.4953 71.4161
25 A 1023.9605 2.0951
26 A 1116.6769 72.3448
27 A 1169.9293 8.4922
28 A 1176.3713 38.0222
29 A 1182.7654 145.8006
30 A 1205.6622 24.5102
31 A 1273.8472 109.8112
32 A 1299.4245 105.3308
33 A 1317.6072 310.8115
34 A 1350.7073 12.4658
35 A 1415.8729 23.7783
36 A 1457.2658 44.1959
37 A 1476.1551 7.3752
38 A 1488.4559 5.2607
39 A 1510.4713 16.2123
40 A 1548.3812 35.7209
41 A 1615.7909 113.9162
42 A 1636.6765 74.2978
43 A 1758.8320 328.4786
44 A 2872.2730 122.4812
45 A 3024.3392 63.6978
46 A 3105.8222 27.6408
47 A 3133.8598 11.1181
48 A 3139.3115 12.0457
49 A 3185.1942 1.7627
50 A 3201.1030 1.8572
51 A 3825.9796 68.0882
Frequency Scale Factor
Normal Mode Amplitude
Animation Speed
IR Spectrum  
Peak Width (cm-1)

Quote

IT WAS A GAME, A VERY INTERESTING GAME ONE COULD PLAY. WHENEVER ONE SOLVED ONE OF THE LITTLE PROBLEMS, ONE COULD WRITE A PAPER ABOUT IT. IT WAS VERY EASY IN THOSE DAYS FOR ANY SECOND-RATE PHYSICIST TO DO FIRST-RATE WORK. THERE HAS NOT BEEN SUCH A GLORIOUS TIME SINCE. IT IS VERY DIFFICULT NOW FOR A FIRST-RATE PHYSICIST TO DO SECOND-RATE WORK. P.A.M. DIRAC, ON THE EARLY DAYS OF QUANTUM MECHANICS DIRECTIONS IN PHYSICS, 1978, P. 7