

Introduction to ¹H-NMR Spectroscopy Part 2

Main topics

- Spin-spin coupling, J values
- Spectra of alkenes and aromatic molecules
- Putting it all together

Coupling constant J (Hz) – indicates strength of coupling

J ~ 7 Hz for alkyl (sp³) systems

Coupling constants in aromatic systems

Splitting patterns in aromatic systems

Whyich Higmadris shired an He?

Consider the ring substituents and resonance structures (when applicable)

 NH_2 is an electron-donating group through the π -system.

 H_d shielded relative to H_e can be rationalized by resonance effects.

-NH₂, -NR₂, -OMe, -OH, etc. are electron-donating groups via the π -system. Electron-donating groups increase e⁻ density at the *ortho* and *para* C-atoms. H-atoms at *ortho* and *para* positions are shielded relative to benzene H-atoms.

Why is H_b more shielded than H_c ?

Why is H_c so deshielded?

Consider the ring substituents and resonance structures

Resonance structures of the nitro group

NBO charges B3LYP/6-31G(d) NO_2 is an electron-withdrawing group through the π -system.

 H_c deshielded relative to H_b can be rationalized by resonance effects.

-NO₂, -CO₂R groups are electron-withdrawing groups via the π -system. Electron-withdrawing groups reduce e⁻ density at the *ortho* and *para* C-atoms. H-atoms at *ortho* and *para* positions are deshielded relative to benzene H-atoms.

Splitting patterns in alkene systems

Coupling constants in alkene systems

Write down the relationships between the alkene protons

Write down the relationships between the alkene protons

List all couplings, strongest first

Derivation of splitting diagrams - H_a

$300 \ MHz \ {}^{1}H \ NMR \\ {}^{In \ CDCl3}$

Coupling constants in aromatic systems

Write down the relationships between the protons! List all couplings, start with the strongest coupling

Write down the relationships between the alkene protons

List all couplings, strongest first

Derivation of splitting diagrams - H_c

To predict the appearance of H_c:

Apply the n+I rule to each different coupling Apply largest coupling first

Derivation of splitting diagrams - H_a

To predict the appearance of H_a :

Apply the n+I rule to each different coupling Apply largest coupling first

Derivation of splitting diagrams - H_b

To predict the appearance of H_{b} :

Apply the n+I rule to each different coupling Apply largest coupling first

Derivation of splitting diagrams - H_d

To predict the appearance of H_d :

Apply the n+l rule to each different coupling Apply largest coupling first

