344 Organic Chemistry Laboratory Fall 2013 Lecture 2 More H-NMR Spectroscopy June 18 2013 #### **Coupling constant J (Hz) – indicates strength of coupling** ### $J \sim 7 Hz$ for alkyl (sp³) systems 300 MHz ¹H NMR In CDCl3 1) Two different coupling constants in a simple alkyl chain (J_{ab} much larger than J_{bc}) apply strongest coupling first! 2) Two identical coupling constants in a simple alkyl chain (J_{ab} equal or almost equal to J_{bc}) 2) Two identical coupling constants in a simple alkyl chain (J_{ab} equal or almost equal to J_{bc}) When coupling constants are equal, splitting results in n + 1 peaks (i.e. a "normal" splitting pattern) #### THIS IS THE MOST COMMON CASE FOR A SIMPLE ALKYL GROUP ## **Coupling constants in aromatic systems** $$J_{ab} = J_{ortho} = 6 - 12 Hz$$ H_a shielded relative to H_b which can be rationalized by resonance effects. (Shielding/deshielding by alkyl groups is usually minor.) -NH₂, -NR₂, -OMe, -OH, etc. are common electron-donating groups. Electron-donating groups increase e^- density at the o and p C-atoms. This shields the H-atoms at those positions relative to benzene H-atoms. ОМе ## 300 MHz 1 H NMR In CDCl3 H_b deshielded relative to H_a which can be rationalized by resonance effects. Recall, -OCH₃ is electron-donating which helps shield the H_a atoms. -NO₂, -NR₃⁺, -CF₃, -CO₂R etc. are common electron-withdrawing groups. Electron-withdrawing groups reduce e^- density at the o and p C-atoms. This deshields the H-atoms at those positions relative to benzene H-atoms. ## $300~MHz~^{\rm 1}H~NMR_{In~CDC13}$ ## **Coupling constants in alkene systems** $$J_{ab} = J_{cis} = 6 - 12 \text{ Hz}$$ $$H_{b}$$ $$J_{bc} = J_{gem} = 1 - 3 \text{ Hz}$$ $$H_{c}$$ $$J_{ac} = J_{trans} = 12 - 18 \text{ Hz}$$ $$J_{\rm trans} > J_{\rm cis} > J_{\rm gem}$$ ## H_a is trans to H_cH_a is cis to H_b 300 MHz ¹H NMR In CDC13 3) Splitting in alkene systems $(J_{ac} > J_{ab})$ apply strongest coupling first! $$J_{ac} = J_{trans}$$ $$J_{ab} = J_{cis}$$ $$J_{trans} > J_{cis}$$ Same concept as example 1) **Doublet of doublets** #### 300 MHz ¹H NMR In CDCl3 #### 300 MHz ¹H NMR In CDCl3 $300~MHz~^1H~NMR_{In~C~DC~l3}$ ## 300 MHz 1 H NMR In CDC13 ## **Coupling constants in aromatic systems** Write down the relationships between the protons! 4) Splitting in aromatic systems $(J_{cb} = J_{cd})$ Can also apply to H_a, just draw diagram using meta coupling constants Overlap of peaks in each signal due to similarity of coupling constants J_{cb} and J_{cd} Same concept as example 2) Doublet of doublets but...... central peaks overlap to give appearance of 1:2:1 triplet (ITS NOT A REAL TRIPLET!!!) As practice, draw the splitting diagrams for H_b and H_d - list relationships of each proton - apply n+1 rule to these relationships - factor in the coupling constants ## H_b is most deshielded (proximity to NO₂ group) H_d is most shielded (proximity to OMe group) ## **Strategy and Tactics for solving NMR spectra** #### **How many different types of H-atoms?** Indicated by how many groups of signals #### What types of H-atoms? Indicated by the chemical shift of each signal #### **How many H-atoms of each type are there?** Indicated by the integration of the signal for each group #### What is the connectivity of the molecule? Indicated by the splitting pattern and coupling constant of each signal #### What other evidence do you have? Use GC-MS, ¹³C-NMR, IR, melting point etc. as complimentary information ## **Practice and Ask Questions!**