344

Organic Chemistry Laboratory

Introduction to ¹³C-NMR Spectroscopy

Main topics

- ¹³C-atom chemical shift range

-¹H-coupled and decoupled ¹³C-NMR spectra

¹H-NMR Spectrum of *n*-pentane

¹H-NMR Spectrum of *n*-hexane

© 2014, Sigma-Aldrich Co. ALL RIGHTS RESERVED

300 MHz ¹H NMR In CDCl3

¹H-NMR Spectrum of *n*-docosane

© 2014, Sigma-Aldrich Co. ALL RIGHTS RESERVED

¹³C-NMR Spectroscopy

¹³C is NMR active $(I = \frac{1}{2})$; ¹²C is NMR inactive (I = 0).

The natural abundance of ¹³C is ~1.1%.

A greater chemical shift range provides greater better differentiation of signals; reduced 2nd order effects

Often the NMR experiment is performed in a ¹H-decoupled manner to simplify the spectrum; removes coupling to H-atoms.

¹³C-NMR Spectrum of *n*-Hexane

© 2014, Sigma-Aldrich Co. ALL RIGHTS RESERVED

¹³C-NMR Spectrum of Methanol

¹H is > 99% abundant; it couples strongly to ¹³C –atom it is attached to (${}^{1}J_{HC}$ = 100-210 Hz) with normal *n+1 rule* splitting.

¹³C-NMR Spectroscopy Chemical Shift Ranges

Reich, Hans J. http://www.chem.wisc.edu/areas/reich/handouts/chem343-345/345-nmr-handout.pdf 9

¹³C-NMR Spectrum of Ethyl Cyanoacetate

¹³C-NMR Spectrum of Ethyl Cyanoacetate

© 2014, Sigma-Aldrich Co. ALL RIGHTS RESERVED

Isotropic NMR Shifts relative to TMS calculated with WebMO/Gaussian09 at B3LYP/6-31G(d)

Determination of 4'-sulfamoylacetanilide Regiochemistry

Determination of 4'-sulfamoylacetanilide Regiochemistry

