CHEM 344 Spectroscopy Problem Set

Due at start of discussion session Wednesday 25th/Thursday 26th September

1) Draw the ¹H-NMR spectrum of a 2:3:2 mixture of 1,4-dimethoxybenzene, 2-propanone, and diethyl ether.

Clearly show the multiplicity, the relative peak heights, and integration value of each signal in the ¹H-NMR spectrum of this mixture. You do not need to show signals from the solvent or reference compound.

1,4-Dimethoxybenzene (CDCl₃): δ 3.80 (CH₃), 6.80 ppm (Ph-H).

2-Propanone (CDCl₃): 2.10 ppm (CH₃)

Diethyl ether (CDCl₃): δ 1.20 ppm (CH₃), 3.40 ppm (CH₂)

10 pts total

Questions 2 - 4 require you to use a combination of molecular formula, NMR and MS data in order to identify each unknown compound. Spectroscopic data are given on the following pages.

- show clearly your calculation of the IHD value for each compound.

- show all lone pairs and charges for each structure, partial structure, or fragment.

- label each set of equivalent protons using the H_a , H_b , H_c etc. labeling system shown in the NMR lectures and practice problem sets.

- assign each ¹H-NMR signal to a particular set of equivalent protons and write your assignments directly onto the spectrum.

- draw the molecule directly onto the ¹H-NMR spectrum.

- identify each ¹³C-NMR signal as either alkyl, vinyl, alkynyl, aryl, nitrile, imine, or carbonyl (you do not need to assign individual carbon atoms to each signal).

- identify each IR absorption band as due to a specific functional group.

- draw MS fragments for all labeled peaks in the EI-MS directly onto the spectrum (you do not need to show the fragmentation mechanism).

- use all data supplied and hand in all spectra for each question.

- write and sketch clearly! Your TA cannot grade what he/she cannot read.

- points will be deducted for illegible writing, unclear/ambiguous drawings, etc.

2) Use the supplied ¹H-NMR, ¹³C-NMR, and IR data to identify Compound A, $C_8H_5NO_5$ (10 pts).

3) Use the supplied ¹H- NMR, ¹³C-NMR, IR, and EI-MS data to identify Compound B, $C_5H_7NO_2$ (14 pts).

4) Use the supplied ¹H- NMR, ¹³C-NMR, and EI-MS data to identify Compound C, $C_{13}H_{20}N_2O_2$ (16 pts).

Q2) Compound A C₈H₅NO₅

¹H-NMR Spectrum 6 – 10.5 ppm (no signals 0-6 ppm)

300 MHz ¹H NMR In CDCl3 & DMSO-d6

Q2) Compound A C₈H₅NO₅ ¹³C-NMR Spectrum

Q2) Compound A C₈H₅NO₅ IR Spectrum

Q3) Compound B C₅H₇NO₂ ¹H-NMR Spectrum

300 MHz ¹H NMR In CDCl3

Q3) Compound B C₅H₇NO₂ ¹³C-NMR Spectrum

Q3) Compound B C₅H₇NO₂ IR Spectrum

Q3) Compound B C₅H₇NO₂ EI-MS

Q4) Compound C $C_{13}H_{20}N_2O_2$

¹H-NMR Spectrum 0- 8 ppm

 $300~MHz~^1H~NMR_{In~CDC13}$

Q4) Compound C $C_{13}H_{20}N_2O_2$

¹H-NMR Spectrum 1.0 – 4.5 ppm

300 MHz ¹H NMR In CDC13

Q4) Compound C $C_{13}H_{20}N_2O_2$

¹H-NMR Spectrum 6.5 – 8.0 ppm

 $300 \ MHz \ {}^{1}H \ NMR _{In \ CDCl3}$

Q4) Compound C $C_{13}H_{20}N_2O_2$ ¹³C-NMR Spectrum

Q4) Compound C $C_{13}H_{20}N_2O_2$ EI-MS

