Name:

Spectroscopy Problem Set

TA:

Due at start of discussion Monday/Tuesday the $22^{nd}/23^{rd}$ September

 Assign all of the integrated signals in the ¹H-NMR spectrum of the crude reaction mixture from the aerobic oxidation reaction shown below. Use the standard labeling (H_a, H_b, H_c, etc.) shown in the NMR lectures and problem sets. Justify your assignments by use of the empirical (Curphy-Morrison) parameters found in the appendix of the laboratory manual.

Use the ¹H-NMR spectrum of the crude product mixture to determine the % conversion of this reaction (assume there are no side reactions). Note that one of the signals of the low abundance molecule is completely obscured. (**10 pts**)

- 2) Use the supplied spectral data to identify Compound 2, $C_{14}H_{12}O_2$. (14 pts)
- 3) Use the supplied spectral data to identify Compound 3, C₅H₇BrO₂. (14 pts)
- 4) Use the supplied spectral data to identify Compound 4, $C_{11}H_{14}O_2$. (12 pts)

Questions 2 - 4 require you to use a combination of molecular formula, NMR and MS data in order to identify each unknown compound; use all data supplied and hand in all spectra for each question.

- Clearly provide your calculation of the unsaturation number (IHD, DBE) value for each compound.
- **Draw all molecules or fragments directly onto the provided spectra**. Show all lone pairs and charges for each structure. Write and sketch clearly!
- Label each set of equivalent protons using the H_a, H_b, H_c etc. labeling system shown in the ¹H-NMR lectures and practice problem sets. Assign each ¹H-NMR signal and write your assignments directly onto the spectrum. Justify your assignments by use of the empirical (Curphy-Morrison) parameters found in the laboratory manual.
- Identify each ¹³C-NMR signal as either alkyl, vinyl, alkynyl, aryl, nitrile, imine, or carbonyl (you do not need to assign individual carbon atoms to each signal).
- Assign each key **IR** absorption band >1500 cm⁻¹ to a specific functional group.
- Draw fragments for all labeled peaks in the **EI-MS** directly onto the spectrum (you do not need to show the fragmentation mechanism).

1) Aerobic Oxidation Crude Product Mixture ¹H-NMR

2) Compound 2 ($C_{14}H_{12}O_2$): ¹H-NMR

300 MHz ¹H NMR In CDCl3

2) Compound 2 ($C_{14}H_{12}O_2$): ¹³C-NMR

75 MHz ¹³C NMR In CDCl3

2) Compound 2 ($C_{14}H_{12}O_2$): EI-MS

6

3) Compound 3 (C₅H₇BrO₂): ¹H-NMR

3) Compound 3 (C₅H₇BrO₂): ¹³C-NMR

3) Compound 3 (C₅H₇BrO₂): EI-MS

4)

4) Compound 4 ($C_{11}H_{14}O_2$): ¹H-NMR

300 MHz ¹H NMR In CDCl3

4) Compound 4 ($C_{11}H_{14}O_2$): ¹³C-NMR

75 MHz ¹³C NMR In CDCl3

13

 Last Name (print):
 CHEM 344

 Summer 2014
 Summer 2014

 First Name (print):
 Spectroscopy Problem Set

TA's Name: _____

1) _____ (10 pts)

2) _____ (14 pts)

3) _____ (14 pts)

4) _____ (12 pts)

Total _____ (50 pts)

_____ (math double-check)