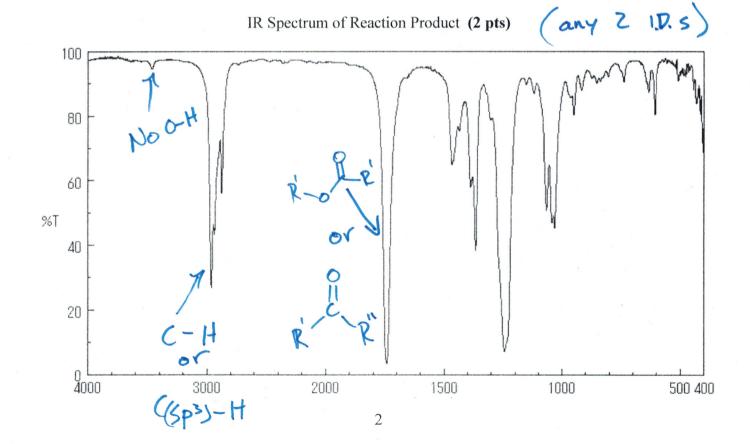
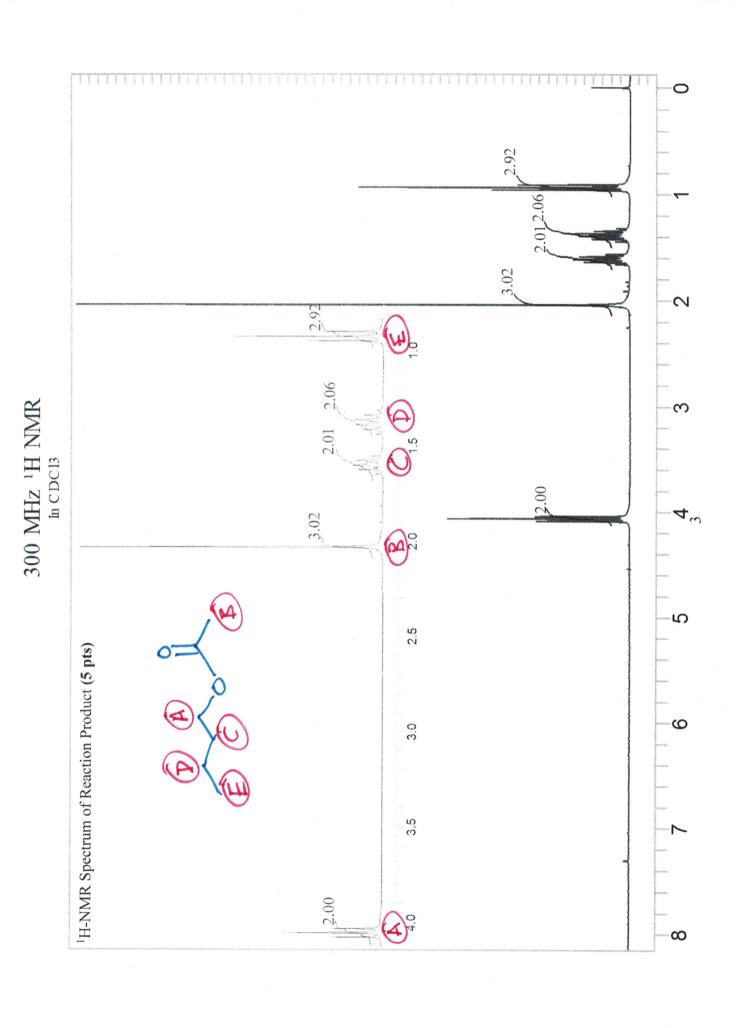
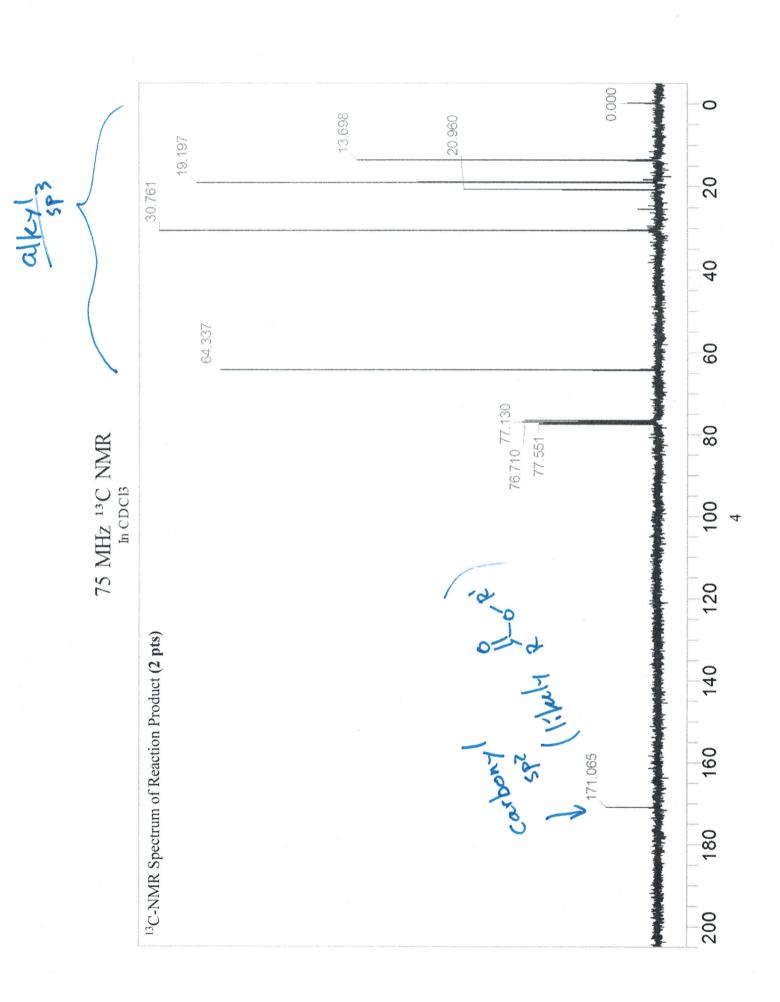
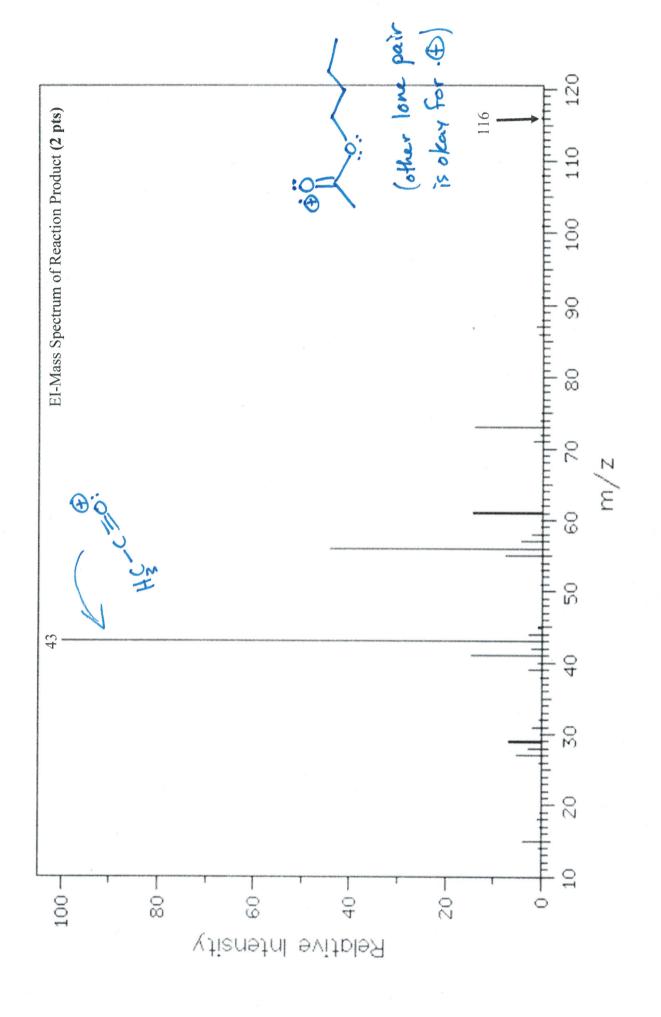
CHEM 344 Summer 2014 Midterm Quiz (100 pts)

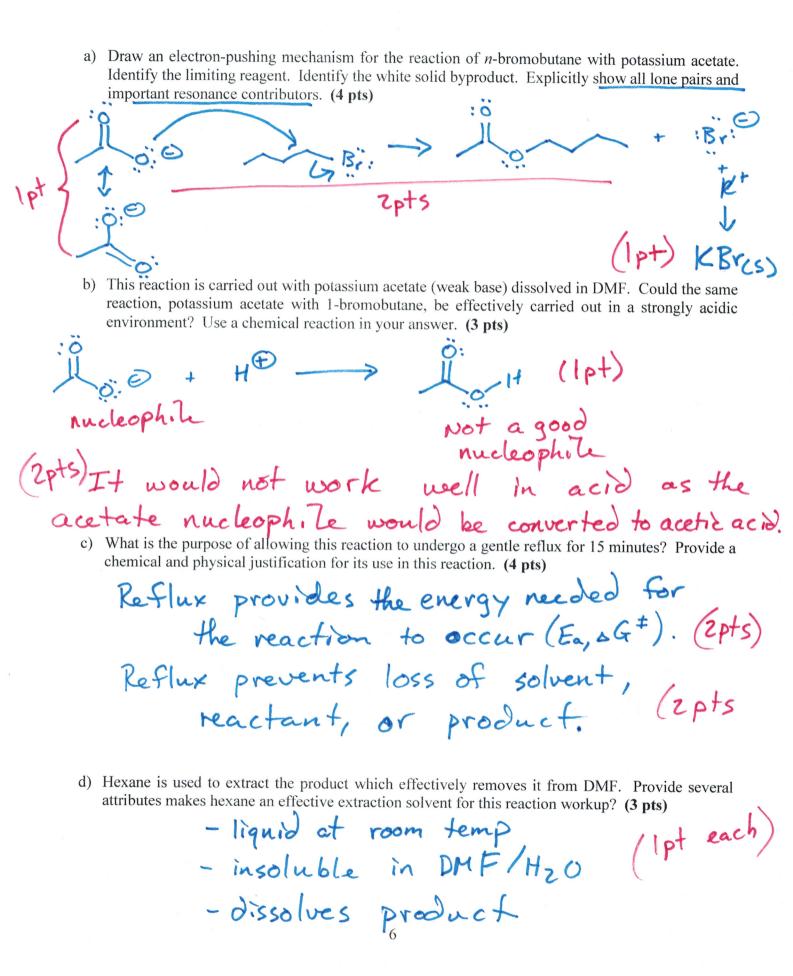
Name:

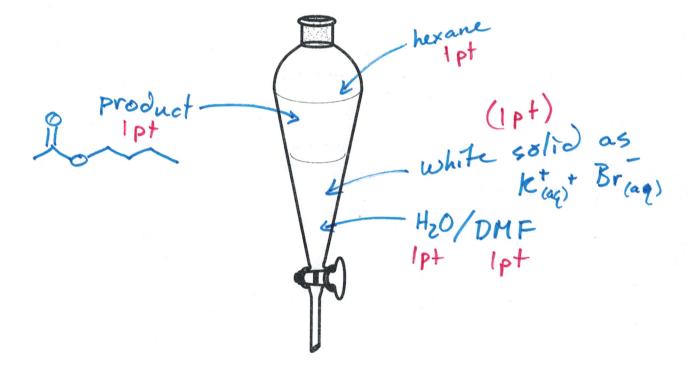

Ley


TA Name:

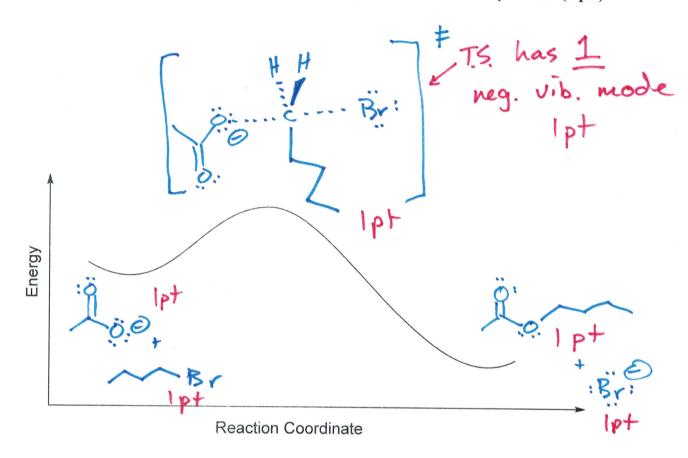

Directions for analyzing spectra:


- Label each set of equivalent protons using the H_a, H_b, H_c etc. labeling system. Assign each ¹**H-NMR** signal and write your assignments directly onto the spectrum. Justify your assignments by use of the empirical chemical shift parameters (Curphy-Morrison parameters) or chemical shift tables found at the end of the exam.
- Identify each ¹³C-NMR signal as either alkyl, vinyl, alkynyl, aryl, nitrile, imine, or carbonyl (you do not need to assign individual carbon atoms to each signal).
- Assign each key **IR** absorption band >1500 cm⁻¹ to a specific functional group.
- Draw fragments for all labeled peaks in the **EI-MS** directly onto the spectrum (you do not need to show the fragmentation mechanism unless directed to do so).


1) A mixture of 0.5 g (5.1 mmol) of potassium acetate, 1 mL, 9.3 mmol, ρ = 1.276 g/cm³ of 1-bromobutane, and 3 mL of N,N-dimethylformamide (DMF, ρ = 0.949 g/cm³) and a few boiling chips were added to a 5-mL round-bottom flask equipped with a reflux condenser. The heterogeneous mixture is then heated until the DMF (bp 156 °C) and 1-bromobutane (bp 100–104 °C) begins to gently boil. Most, but not all, of the potassium acetate dissolves prior to achieving reflux. After a few minutes the mixture thickens significantly upon the formation of a white solid. The gentle reflux is maintained for a total of 15 minutes and then the solution is cooled to room temperature and diluted with approximately 50 mL of water. The organic products were isolated by extraction with two 15-mL portions of hexane (ρ = 0.66 g/cm³). Anhydrous sodium sulfate (Na₂SO₄) was added to the combined organic layers and the mixture stirred for 5 min. Following gravity filtration, the solvent was removed by evaporation to give the crude product. This sample is then used for ¹H-NMR, IR, and GC-MS analysis; the spectra are provided below and on the subsequent pages. Analyze the spectra and answer the follow up questions. (39 pts total)



e) What is the purpose of anhydrous Na₂SO₄? Briefly describe chemically or physically how it accomplishes this. (3 pts)


It is a drying agent that removes H2O from the organic layer. (2pts)

It does so by sequestering H2O through coordination. (1pts) (Not making H2)

f) A separatory funnel is used to extract the product in hexane from DMF, H₂O, and the white solid mentioned in the procedure. On the image below, label the identity of each of the liquid layers. Indicate which layer will contain the product. Indicate which layer will contain the white solid byproduct mentioned above. (5 pts)

g) In order to better understand the reaction performed, the potential energy surface is explored computationally. On the potential energy surface below, draw the structures that would need to be optimized for the reactants, transition state and product. Computationally, what identifies a molecular structure as a transition state, differentiating it from a reactant or product? (6 pts)

2) In the laboratory, a series of elimination reactions were carried out in a variety of acidic or basic conditions to produce three isomeric butenes. All of the alkene products are exceptionally volatile care must be taken to collect the products; when analyzing these data assume no product was lost due to evaporation. Use the results to answer the questions below. (29 pts total)

5	Starting Material —	Reagent + + +			
		Α		В	С
***************************************	Starting Material	Reagent	% A	% B	% C
1	OH	H ₂ SO ₄ /H ₃ PO ₄	5	62	33
2	OH	H_2SO_4	5	53	42
3	OH	H ₂ SO ₄ /H ₃ PO ₄	10	56	34
4	OH	H_2SO_4	12	56	32
5	Br	KOH/EtOH	10	49	41
6	Br	KO/Bu	100	0	0

a) Would you expect both starting material molecules in reaction 1 to show up as a single spot on a TLC plate used to monitor the reaction? Explain briefly including drawings of each molecule. (4

enantionners in their properties in an achiral environment. (2 pts)

Starting Materials in Reaction 1 are enantioners
of of the tests of the test o

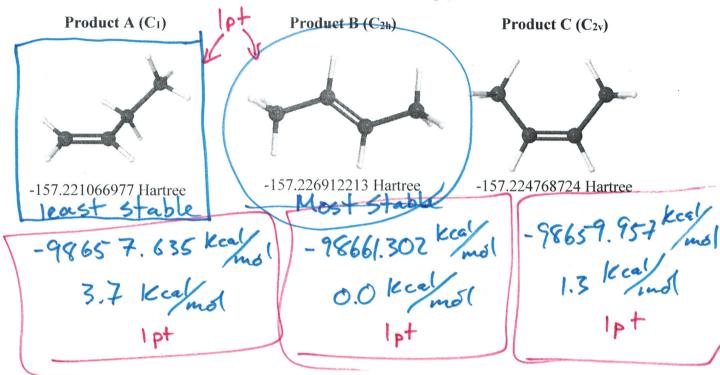
b) In error, a student used conc. HNO₃ rather than conc. H₂SO₄ in reaction 1. Predict the outcome of the experiment with this reagent substitution and briefly explain your reasoning. (3 pts)

c) Reactions 1 – 4 generate three isomeric alkenes (bp range from -6 to 3 °C) and a stoichiometric byproduct of water. Given the volatility of the product, explain how the alkene products are obtained as a liquid and starting material/water during the course of the reaction. (4 pts)

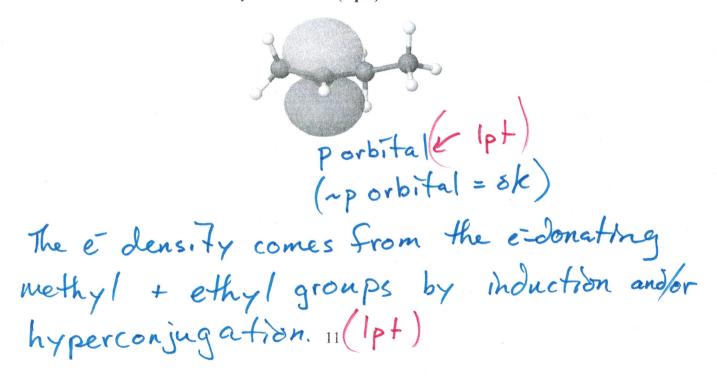
The products are isolated by distillation into a very cold receiving flask. (Zpt) (Z-10°C) (Zpt)

d) Which of the reactions is most selective? Explain using the reaction mechanism why that is the case. (6 pts)

Reaction 6 is most selective as (zpts)
only 1 product is obtained
(zpts)


(-atom

only (-atom
with c-H
bonds located (zpts)

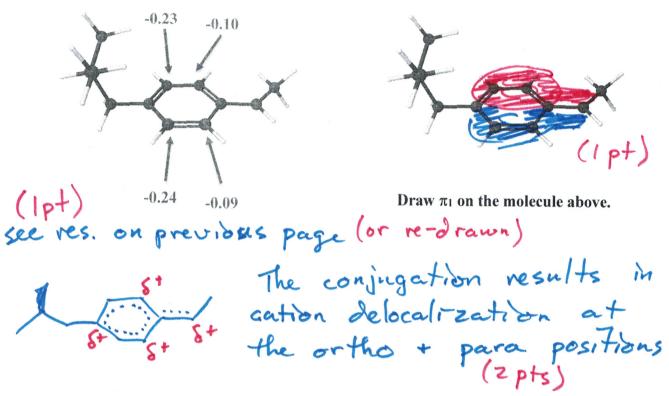

Br vicinally

H H

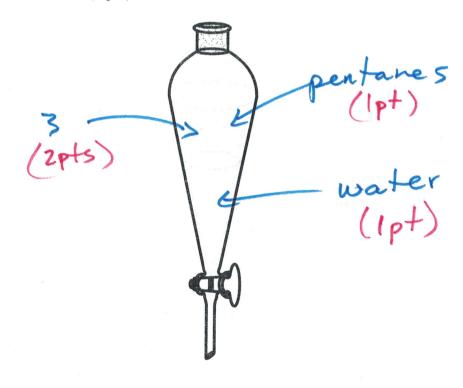
e) The three isomeric products were investigated using B3LYP/6-31G(d) calculations to determine their relative stability. Their optimized geometries are presented below along with their symmetry point groups and RB3LYP energies in Hartrees/Particle (1 Hartree/Particle = 627.509 kcal/mol). Determine the relative energy of each in kcal/mol referenced to the most stable molecule. (3 pts) Circle the most stable isomer and put a box around the least stable isomer. (1 pt)

f) Reactions 1 – 4 generate two possible carbocations, one of which is depicted below. Approximate the hybridization of the depicted *empty* orbital and explain why its NBO electron occupancy is 0.396. Where does the electron density come from? (2 pts)

g) Explain why reactions # 3 and 4 produce more than twice the pts)	the amount of A as reactions #1 and #2. (4
For 3& 4, the first cation	is primary prod
For 3& 4, the first cation by OHz -> (Ipt)	. It can then
form product A directly	or undergo a
hydride shift to	shich will make
primarily B+C Since	it requires energy
do the hydride shift, some form alkene product. (zpt:	fractionwill just
form alkene product.	(mana a a)
For 1&2, only 15 15 e	ver tornee
leading to primarity B+	(* p+)
h) Of reactions 1 – 6, which are under thermodynamic control pts)	•
Thermodynamic (E1)	
1-4	5-6
Zpts	Zpts


3) A multi-step synthesis of ibuprofen (5) has been carried out in an undergraduate organic laboratory course using the following synthetic route from *p*-isobutylacetophenone (1). Answer the following questions about key steps in the procedure, reactants, and products. (Note, that some of the reactions utilized are from the 2nd half of CHEM 344; you will only asked about the reactions and concepts relevant to the 1st half of the course.) (32 pts total)

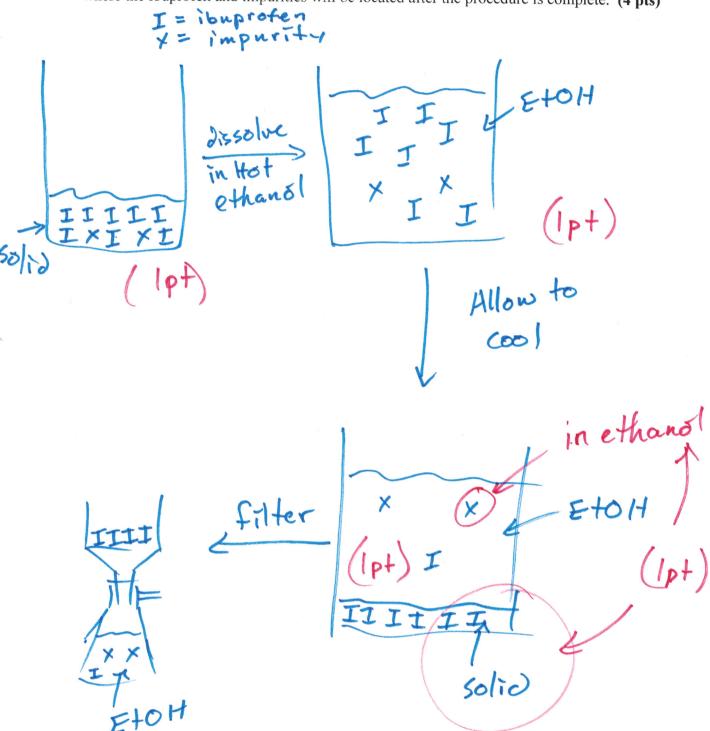
a) In the first reaction converting *p*-isobutylacetophenone (1) to 1-(4-Isobutylphenyl)ethanol (2), explain how the IR spectrum of the product mixture would be expected to change throughout the course of the reaction. Discuss the key IR spectral features of both the reactant and product. (4 pts)


b) The following excerpt is from the procedure for converting 2 to 3: Use it for any of the subsequent questions.

"While working in a fume hood, use a pipet to carefully transfer the 1-(4-isobutylphenyl)ethanol (2) into a separatory funnel and then use two 5-mL portions of 12 M HCl to help transfer any that remains in the flask and the pipet. Shake this mixture about 2 minutes. Extract the product (3) from this mixture with 3 x 5 mL of pentanes ($\rho = 0.64 \text{ g/cm}^3$), and then swirled with Na₂SO₄. Gravity filter and remove the solvent by evaporation from a pre-weighed 50-mL round-bottomed flask, and then weigh to determine the yield. Record the ¹H NMR spectrum of one drop of this product in about 0.5 mL CDCl₃. Stopper the flask. Use a marker to write your name on it, and then hand it in on a cork ring."

c) Explain the NBO charge data for the C-atoms shown below using a series of resonance structures and by a drawing of the π_1 molecular orbital. (4 pts)

d) A separatory funnel is used to extract 1-Chloro-1-(4-isobutylphenyl)ethane (3) in pentanes from an aqueous acidic solution. On the image below, label the identity of each of the liquid layers. Indicate which layer will contain 3. (4 pts)



e) The reaction of 4 with carbon dioxide results in the formation of the carboxylate shown below. It is extracted in an ether layer as ibuprofen (5) by addition of 8 mL of 4 M HCl (aq). Explain how the solubility of ibuprofen (5) compares to the carboxylate in an aqueous solution and in an organic solvent. (4 pts)

f) If 1.00 mL of *p*-isobutylacetophenone (1, $\rho = 0.952$ g/cm³) is used to create 0.813 g of ibuprofen what was the overall yield of the synthesis? **Show all of your work.** (4 pts)

$$\frac{1.00 \text{ mL 1}}{1 \text{ mL 1}} \frac{1}{176.25 \text{ g el}} \frac{1}{1 \text{ mol 5}} \frac{1}{1 \text{ mol 5}} \frac{206.29}{1 \text{ mol 5}} = \frac{1.114 \text{ g 5}}{1.114 \text{ g 5}} \frac{1.114 \text{ g 5}}{1.114 \text{ g 5}} = \frac{1.114 \text{ g 5}}{1.114 \text{ g 5$$

g) The crude ibuprofen can be purified (separated from impurities) by recrystallization in ethanol and vacuum filtration. Draw a series of diagrams that explain how this process works. Clearly identify where the ibuprofen and impurities will be located after the procedure is complete. (4 pts)

