344 Organic Chemistry Laboratory Spring 2014

Introduction to organometallic chemistry

Portraits: http://scientistic.tumblr.com

What is organometallic chemistry?

Organometallic chemistry = Study of compounds containing a Carbon-Metal bond

Organometallic chemistry = Organic synthesis using metals

Periodic Table

Am

Pu

1.3

Cm

Bk

Cf

Es

Fm

Md

No

Lr

Actinides

7

Th

1.3

Pa

1.5

U

1.7

Np

1.3

Organometallics – s-block metals

Organometallics – s-block compounds

Reactivity of C-atom in a typical organic compound is as an electrophile

Why do Grignards and organolithiums react as carbon nucleophiles?

Charge distribution – Chlorobenzene

X = Pauling electronegativity

NPA charges, B3LYP/6-31G(d)

Charge distribution – Phenyl lithium

X = Pauling electronegativity

NPA charges, B3LYP/6-31G(d)

Carbon-Metal bond polarity drives reactivity

	C-M bond	Δ Electronegativity [#]	% ionic character*
\frown	C-K	2.55 – 0.82 = 1.73	68
R E A C	C-Na	2.55 – 0.93 = 1.62	63
	C-Li	2.55 – 0.98 = 1.57	61
	C-Mg	2.55 – 1.31 = 1.24	48
	C-Ti	2.55 – 1.54 = 1.01	40
1	C-Al	2.55 - 1.61 = 0.94	37
V I	C-Cu	2.55 – I.90 = 0.65	25
	C-O	2.55 - 3.44 = -0.89	35
Y	C-Cl	2.55 - 3.16 = -0.61	24
	C-Br	2.55 - 2.96 = -0.41	16
	C-H	2.55 - 2.20 = 0.35	14

[#] Pauling electronegativity, X

* % ionic character = $[(X_C - X_M) \div X_C]$

Reactivity of Grignard reagents

C-Mg bond % ionic character = 2.55 - 1.31 = **48**%

NPA charges, B3LYP/6-31G(d)

Reactivity of Grignard reagents

NBO calculation, B3LYP/6-31G(d)

Grignard lab – Synthesis of a benzoic acid

Why the need to use anhydrous solvent and a drying column?

B3LYP/6-31G(d)

Summary

Organometallic chemistry

- the chemistry of compounds containing a Carbon-Metal bond
- intersection of organic and inorganic chemistry
- allows "impossible" organic reactions to occur

Organolithium and Grignard reagents

- Polar C-M bonds = reactive toward water/oxygen
- nucleophilic carbon atom, carbanion character
- strongly basic
- main reactivity is toward carbonyl groups
- used in stoichiometric amounts (i.e. 1:1 or greater)

Grignard lab

- use dry, clean glassware
- use dry ether for reaction solvent, regular ether for everything else
- think about which C-X bond is more reactive to insertion of Mg