344 Organic Chemistry Laboratory
Spring 2014



### **Summary of previous lecture**

#### Organometallic chemistry

- the chemistry of compounds containing a C-M bond
- intersection of organic and inorganic chemistry
- allows "impossible" organic reactions to occur

#### **Organolithium and Grignard reagents**

- Polar C-M bonds
- nucleophilic carbon atom, carbanion character
- strongly basic
- reactive toward water/oxygen/acidic protons
- reactivity toward carbonyl groups for C-C bond forming reactions
- used in **stoichiometric amounts** (i.e. 1:1 or greater)

## Gilman reagents: C-C bond formation

Lithium diorganocuprates are useful for C-C bond forming reactions

$$2 \text{ EtLi} + \text{Cul} \xrightarrow{\text{ether}} \text{Et}_2\text{CuLi} + \text{Lil}$$

$$+ \text{Me}_2\text{CuLi} \xrightarrow{\text{hecu}} \text{HeCu} + \text{LiBr}$$

$$+ \text{new C-C bond}$$

$$+ \text{Br} + \text{Et}_2\text{CuLi} \xrightarrow{\text{ether}} \text{Et} + \text{EtCu} + \text{LiBr}$$

Good: joins ("couples") 2 different R groups to form a new C-C bond

Not so good: requires a stoichiometric amount of organometallic reagent

Ideal: a coupling reaction using a sub-stoichiometric ("catalytic") amount of reagent

# Periodic Table - common organometallics



# **Carbon-Metal bond polarity**

|               | C-M bond | Δ Electronegativity# | % ionic<br>character* |  |
|---------------|----------|----------------------|-----------------------|--|
|               | C-K      | 2.55 - 0.82 = 1.73   | 68                    |  |
|               | C-Na     | 2.55 - 0.93 = 1.62   | 63                    |  |
|               | C-Li     | 2.55 - 0.98 = 1.57   | 61                    |  |
| Grignard      | C-Mg     | 2.55 - 1.31 = 1.24   | 48                    |  |
| Ziegler-Natta | C-Ti     | 2.55 - 1.54 = 1.01   | 40                    |  |
| Gilman        | C-Cu     | 2.55 - 1.90 = 0.65   | 25                    |  |
| Schrock       | C-Mo     | 2.55 - 2.06 = 0.49   | 19                    |  |
| Grubbs        | C-Ru     | 2.55 - 2.20 = 0.35   | 14                    |  |
|               | C-H      | 2.55 - 2.20 = 0.35   | 14                    |  |
| Pd-coupling   | C-Pd     | 2.55 - 2.20 = 0.35   | 14                    |  |
| Wilkinson     | C-Rh     | 2.55 - 2.28 = 0.27   | 11                    |  |

<sup>#</sup> Pauling electronegativity, X

# What is a catalyst?

A catalyst increases the rate of a reaction by lowering the activation energy (E<sub>a</sub>)

A catalyst does not change the energy of the starting materials or products



## Heterogeneous vs. Homogeneous catalysis

Catalytic hydrogenation of an alkyne



The catalyst (Pd metal) and reactants (alkyne and H<sub>2</sub> gas) are in different phases

#### THIS IS A **HETEROGENEOUS** CATALYST SYSTEM

A **HOMOGENOUS** catalyst is in the <u>same phase</u> as the reactants (usually solution)

But metals are insoluble in organic solvents.....and chemistry happens in solution

How can we make a homogeneous metal catalyst system?

Need **ligands.....** 

### Ligands

Ligands are molecules bonded to a transition metal via donor atoms such as P, N, C, O etc.

Ligands act as Lewis bases (i.e. sigma-electron donors) toward the transition metal



Metal-ligand compounds are called coordination complexes

## A coordination complex of palladium

$$PdCl_2 + 2 PPh_3 \longrightarrow PdCl_2(PPh_3)_2 + 2 PPh_3 \longrightarrow Pd(PPh_3)_4$$

Metal complexes are soluble in organic solvents



Pd(PPh<sub>3</sub>)<sub>4</sub>

Tetrakis(triphenylphosphine)palladium

# Palladium: One metal, many reactions



Basics of catalytic cycle - generalized view



# Understanding the catalytic cycle

Most Pd-catalyzed coupling reactions proceed via a common catalytic cycle

 $A-X + M-R \xrightarrow{Pd(PPh_3)_4} A-R + M-X$ 

A = organic fragment I

R = organic fragment 2

X = halide or other counter ion

M = metal atom

3 key steps



## Key steps of the cycle – oxidative addition

First step of typical C-C coupling catalytic cycle

 $A-X + M-R \xrightarrow{Pd(PPh_3)_4} A-R + M-X$ 

Addition of a reagent (A-X) to  $Pd(PPh_3)_2$  species

A-X is typically an aryl, alkenyl, or alkynyl halide

$$\begin{array}{c}
A \\
+ Pd(PPh_3)_2 \\
& Pd(0)
\end{array}$$
oxidative
$$\begin{array}{c}
A \\
& A \\
& Pd(PPh_3)_2
\end{array}$$
Pd(II)

## Key steps of the cycle - transmetallation

Middle step of typical C-C coupling catalytic cycle

$$A-X + M-R \xrightarrow{Pd(PPh_3)_4} A-R + M-X$$
"conditions"

Exchange reaction between MR and Pd(II) species

$$R = aryl$$
, alkenyl, alkynyl group  $M = B$  (Suzuki), Sn (Stille), Mg (Kumada), Zn (Negishi)



Organic group (R) replaces X on Pd

Drive toward less polar C-M bond in transmetallation product

## Key steps of the cycle – reductive elimination

Final step of typical C-C coupling catalytic cycle

Elimination of product (A-R) from Pd atom

Coupling product A-R released, active catalyst  $Pd(PPh_3)_2$  reformed

# Suzuki coupling – the catalytic cycle







### Summary

#### Organometallic chemistry

- the chemistry of compounds containing a C-M bond
- enables "impossible" organic reactions to occur

#### **Organolithium and Grignard reagents**

- polar C-M bond, carbanion character, strong bases, reactive toward carbonyl and acidic groups
- used in stoichiometric (1:1 or greater) amounts

#### **Transition metal-ligand complexes**

- ligands coordinate to transition metal to form complex, soluble in organic solvents
- complexes serve as catalysts for organic reactions
- a catalyst lowers  $E_a$  of a reaction, is not consumed (turnover), sub-stoichiometric amount
- chemistry takes place on metal atom ("bind/react/release")
- catalytic coupling cycle: oxidative addition, transmetallation, reductive elimination
- Pd-catalyzed C-C bond forming reactions are hugely important in pharma and industry
- Practice problem set!

# An example from current research Pd-catalyzed amidation of alkenes





Stahl, S. S. Org. Lett. 2011, 13, 2830-2833.

# An example from current research Pd-catalyzed amidation of alkenes

