Chemistry 329 Spring 2016 (Jin)

SYLLABUS

Lecture time: MW 11:00 – 11:50 AM Lab time: TR 1:20 -5:25 PM Disc time: F 11:00 - 11:50 AM Disc time: F 11:00 - 11:50 AM Lab location: Chem 2377, B387, B351, 2307, 2385

Instructor:Prof. Song JinOffice hours : M 9:50 – 10:50 AMoffice: Chem 3363F 12 – 1 PMphone: 2-1562or by appt. (Chem 3363)e-mail: jin@chem.wisc.edu(Please include "Chem 329" in the subject line.)Course webpage: https://learnuw.wisc.edu

Textbook: Harris, Daniel C. "Quantitative Chemical Analysis" 9th ed.

Other Required Material: Lab manual (available in the Mills Street lobby of Chemistry building), Bound laboratory notebook with carbon copy, Safety goggles

Grades:

The point distribution is as follows:

Exams:	3 exams x 130 pts	=	390 pts.
Homework:	8 assignments x 30 pts	=	240 pts.
Laboratory:	labs (13x 14pts),		•
-	pre-lab quizzes (13x 6pts)		
	project (80 pts)	lab total =	340 pts.
TA evaluation		=	30 pts
Total:			1000 pts.

The intended grading scale is:

0	0
А	890-1000
A/B	840-889
В	790-839
B/C	740-789
С	680-739
D	600-679
F	<599
aaala	may ha ahift

However, the scale may be shifted to reflect overall class performance. You will be updated changes to the scale twice during the semester.

Exams:

There will be three exams this semester. The exams are not cumulative; however, most of the material is inherently pedagogical. Therefore, in general you must have a firm understanding of previous material in order to fully comprehend new material. If you have conflicts, please arrange makeup exam sessions with your TA in advance.

Exam I:March 3, Thursday 2-4 PM (7th week)Exam II:April 19, Tuesday 2-4 PM (14th week)Exam III ("Final Exam"): May 13, Friday 2:45 – 4:45 PM

Homework:

You may work on these assignments as a group, but you must turn in your own homework. Be sure to note that the homework assignments directly reflect exam material. If you can not work out the problems yourself after the completion of the homework, you will not gain the *proficiency* required to solve the problems on the exams within the timeframe of the exams. Homework will be usually due on Mondays at the beginning of lab sessions. No late assignments are accepted. This is a strict deadline.

Course Outline:

The tentative course schedule is as follows:

Week	Lecture Topics	Book Chapters	
1 (Jan 18)	(Jan 18) Intro		
2 (Jan 25)	Units, Errors	3,4	
3 (Feb 1)	Statistics	4	
4 (Feb 8)	Statistics, Spectrophotometry	18	
5 (Feb 15)	Spectrophotometry, Project Intro	18, 19, 20	
6 (Feb 22)	Equilibria	6, 8	
7 (Feb 29) (Exam I)	Acid-base	9	
8 (Mar 7)	Acid-Base	9, 10	
9 (Mar 14)	Acid-base titrations	7, 11	
10 (Mar 21)	Spring Break!		
11 (Mar 28)	Titrations, Systematic treatment 11, 8		
12 (Apr 4)	Activity, EDTA	13, 12	
13 (Apr 11)	Redox, Electrochemistry	14	
14 (Apr 18) (Exam II)	Electrochemistry	15	
15 (Apr 25)	Chromatography	23	
16 (May 2)	Chromatography, Review	24,25	

This schedule will change as we go along, depending on how we do in these lectures. You should also note that textbook chapters 0, 2, and 27 are devoted to analytical laboratory practices. Although you will not be directly tested on these chapters, you may find information in these chapters that will boost your performance in the laboratory.

ACADEMIC MISCONDUCT:

It is expected that all students will conduct themselves with honesty, integrity, and professionalism. Any student caught cheating on an exam will receive an F in the course. This penalty includes incidents such as looking at another student's paper during an exam or altering an exam after it has been graded and then submitting it for re-grading. Any student caught cheating on a lab or homework assignment (for instance, copying another person's work or fabricating data) will receive a zero for that assignment. A second infraction will result in an F for the course. More information on what constitutes academic misconduct and UW policies on handling misconduct can be found at: http://www.wisc.edu/students/saja/misconduct/UWS14.html.

Laboratory:

The laboratory counts for a total of 34% towards your final grade and is divided into three main categories: standard experiments, lab quizzes, and project.

- There will be 13 graded standard experiments, and your grade will be based on the accuracy and precision of your results. The results from these experiments are to be turned in no later than the start of the laboratory period following the completion of the experiment. You will lose 4 pts/day if the result is turned in late.
- The primary goal of the pre-lab quizzes is to prompt you to prepare for the labs beforehand and to test your knowledge and understanding of the concepts behind the standard experiments. Overall, being "prepared" for a lab means you are familiar with the: overall concepts and goals of the experiment, methods used in the experiment to accomplish the goals, procedure (enough so that you understand the impact of each step on the chemistry and the calculations, e.g. dilutions, stoichiometry, etc), and calculations (enough so that you understand how to perform the calculation required for the experiment given a set of raw data). You can have two attempts at each quiz, the higher grade will be the final grade. It is advised that you make your first attempt for each quiz at least 1 day before the lab so that you have time to ask questions before your second attempt, in case you encounter any difficulties. The quiz for each lab becomes unavailable when that lab starts.
- The lab project could be the most challenging and also most rewarding part of this course. We will discuss the project in more details as we go into the semester.

Week	Date	631 Vila Rajaratnam	632 Kellen Delaney	633 Dan Kohler	634 Pingli Wei	635 Dominic Colosi	
1	19-Jan	No Lab					
	21-Jan	Check-in/Weighing	Check-in/Weighing	Check-in/Weighing	Check-in/Weighing	Check-in/Weighing	
2	26-Jan	Volumetric Apparatus					
	28-Jan	Standardization of HCI					
3	2-Feb	Standardization of NaOH					
	4-Feb	Determination of % KHP					
4	9-Feb	Spectrophotometric Det. Of Fe					
	11-Feb	Hardness of Water					
5	16-Feb	A Study of Fluorescein	Chemical Oxygen Demand	A Study of Fluorescein	Chemical Oxygen Demand	A Study of Fluorescein	
	18-Feb	Chemical Oxygen Demand	A Study of Fluorescein	Chemical Oxygen Demand	A Study of Fluorescein	Chemical Oxygen Demand	
6	23-Feb	ProjectDesign Pb Expt					
	25-Feb	ProjectDesign Pb Expt					
7	1-Mar	ProjectDesign Pb Expt					
	3-Mar	Exam 1					
8	8-Mar	Adventures with Buffers					
	10-Mar	ID of an Unknown Weak Acid					
9	15-Mar	Bromocresol Green					
	17-Mar	Practice with ImageJ					
	22-Mar	Spring Break					
	24-Mar						
10	29-Mar	Project	Project	Project	Project	Project	
	31-Mar	Project	Project	Project	Project	Project	
11	5-Apr	Project	Project	Project	Project	Project	
	7-Apr	Project	Project	Project	Project	Project	
12	12-Apr	Project	Project	Project	HPLC	Project	
	14-Apr	HPLC	Fluoride ISE	Ag Electrode Study	Project	Project	
13	19-Apr		Exam 2				
	21-Apr	Project	Project	Project	Project	HPLC	
14	26-Apr	Fluoride ISE	HPLC	Fluoride ISE	Ag Electrode Study	Ag Electrode Study	
	28-Apr	Ag Electrode Study	Ag Electrode Study	HPLC	Fluoride ISE	Fluoride ISE	
15	3-May	Project Presentation	Project Presentation	Check Out	Check Out	Check Out	
	5-May	Check Out	Check Out	Project Presentation	Project Presentation	Project Presentation	