Designing Chemically Robust Metal Oxides for Visible-Light Photocatalysis: toward Solar Z-Scheme Water Splitting

Solar driven water splitting for large-scale hydrogen fuel production from semiconductor photo-electrodes has the potential to provide energy on large scale from renewable, sustainable sources. Our research focuses on the kinetically more demanding oxygen-evolution reaction, and we prepare thin film metal oxide photoanodes by low-temperature, solutionbased processes. One promising light absorber is TiO2:(Nb,N) where Nb and N substitute for Ti and O on their respective lattice sites in anatase. These materials are prepared by sol-gel processing followed by annealing in flowing ammonia. We observe a band-gap energy as low as 2.0 eV at 25% Nb and 2% N. In conjunction with a RuO2 catalyst, powdered TiO₂:(Nb,N) evolves O₂. A second class of materials we study is the transition-metal tungstates, and we have prepared our most promising candidate, CuWO₄, by several routes: electrochemical deposition, sol-gel processing, and spray pyrolysis. These methods afford highly reproducible and robust CuWO₄ thin-film electrodes on transparent conducting substrates. CuWO $_{\scriptscriptstyle d}$ is an n–type semiconductor with a band-gap energy of \sim 2.4 eV. CuWO $_{\scriptscriptstyle d}$ thin films photooxidize water with simulated solar radiation with a nearly quantitative Faradaic efficiency for O_2 evolution at no applied bias in the presence of the sacrificial electron acceptor, [Fe(CN) $_{\wedge}$] $^{3-}$. Most important, these thin-film electrodes are stable against photocorrosion when illuminated with visible light at neutral pH, a significant improvement to the more commonly studied photoanode, WO3. Current efforts are aimed at preparing complex tungstates that absorb lower energy light to improve the quantum yield.

Prof. Bart Bartlett University of Michigan

MATERIALS SEMINAR

SPONSORED BY

SIGMA-ALDRICH

Monday, Sept. 30th
3:30 p.m. in 1315 Chemistry