Department Seminar

Presented by

Prof. Frank Keutsch

"Elucidating Fundamental Chemical Processes in the Atmosphere"

TROPOSPHERIC OZONE AND SECONDARY ORGANIC AEROSOL (SOA) CONTRIBUTE TO POOR AIR QUALITY AND PARTICIPATE IN IMPORTANT ECOSYSTEM-ATMOSPHERE-CLIMATE FEEDBACKS. WE STUDY THE COMPLEX ATMOSPHERIC MULTI-PHASE CHEMISTRY CONTROLLING THESE POLLUTANTS IN ORDER TO IMPROVE AND VALIDATE COMPUTER MODELS USED TO MAKE FUTURE POLICY DECISIONS. THIS REQUIRES AN APPROACH THAT DISREGARDS TRADITIONAL BOUNDARIES BETWEEN DISCIPLINES RANGING FROM PHYSICAL, ANALYTICAL, AND SYNTHETIC CHEMISTRY, THROUGH LASER TECHNOLOGY AND OPTICAL ENGINEERING, TO ATMOSPHERIC DYNAMICS AND METEOROLOGY. IN THIS TALK I WILL PRESENT TWO ASPECTS OF OUR OVERALL RESEARCH:

OXIDATION OF VOLATILE ORGANIC COMPOUNDS, ESPECIALLY VIA THE OH RADICAL, IS CENTRAL TO FORMATION OF SECONDARY POLLUTANTS. MODELS UNDERPREDICT OH RADICAL CONCENTRATIONS BY UP TO A FACTOR OF TEN IN RURAL AREAS, IMPLYING A PROFOUND GAP IN OUR UNDERSTANDING OF THIS CHEMISTRY. ENABLED BY NOVEL

INSTRUMENTATION, WE HAVE
DEVELOPED A NEW APPROACH
TO CONSTRAIN OH
CONCENTRATIONS VIA IN SITU
MEASUREMENTS OF GLYOXAL.
RESULTS SUGGEST THAT OH
OBSERVATIONS MAY BE SUBJECT
TO A SUBSTANTIAL POSITIVE
BIAS. LABORATORY STUDIES OF
A NEW MECHANISM THAT HAS
BEEN PROPOSED TO INCREASE
OH PRODUCTION REVEALS THAT
THIS MECHANISM DOES NOT
MARKEDLY ENHANCE OH BUT MAY

BE IMPORTANT FOR THE GLOBAL CARBON BUDGET.