Hour Exam #2 Chemistry 343 Professor Gellman 28 October 2015 Last Name Answer First Name **General Instructions:** - (i) Use scratch paper at back of exam to work out answers; final answers must be recorded at the proper place on the exam itself for credit. - (ii) Print your name on each page. - (iii) Please keep your paper covered and your eyes on your own work. Misconduct will lead to failure in the course. - 1. (6 points) - (a) The molecule shown below ("L-threose") has an optical rotation of +13.2°. Draw the stereoisomer of L-threose that has an optical rotation of -13.2°. (b) The structure shown below corresponds to the substance "tartaric acid". Provide a drawing that shows the *meso* isomer of tartaric acid. | Name | | | |------|--|--| | | | | 2. (10 points) Show the reagents required to convert the starting molecule to the indicated product. If necessary, differentiate clearly between distinct steps by using "1)", "2)", etc. over or under the arrow. HBr, $$\Delta$$ benzoyl peroxide (racemic) +8 for button (racemic) +3 for justotrawing 1 of 4 w/o indicating racemic +8 for having 4 structures and at the (a) Draw all stereoisomeric forms of 1,3-dimethylcyclohexane, using the 'flat' (hexagon) image for the ring in each case. Label each isomer with A, B, etc.; your labels will be used below. For each stereogenic center in each molecule you draw, indicate whether that center has R or S configuration. +1 for each correct drawing } +9 +otal (b) Draw the two chair conformations for each stereoisomer of 1,3-dimethylcyclohexane. Use your labels from part (a) to indicate which chair conformation drawings correspond to which 'flat' drawings. 12 tor each correct structure. CHZ (For chiral isomers, -/ for eash in correct abs. config. | Name | |------| |------| ## 5. (10 points) (a) Draw the product that can be isolated when the alkene shown below is allowed to react with ozone in methylene chloride (no subsequent reaction). (b) When this reaction is allowed to proceed in acetone as solvent rather than methylene chloride, the product mixture includes the molecule from part (a) and a new molecule. Draw the new molecule below. (<u>Hint</u>: Finding the correct answer requires that you think carefully about the mechanism of this reaction.) | Name | | |------|--| | | | 6. (8 points) Shown below is the two-step process for converting propene to 1-propanol. In step 1 propene is allowed to react with BH_3 to form an organoborane, and in step 2 the organoborane is allowed to react with H_2O_2 under alkaline conditions. Draw a mechanism (curved arrows) for the first portion of step two, showing how the organoborane is converted to molecule X. Be sure to draw all intermediates. | 7. | (29 | points) | |----|-----|---------| |----|-----|---------| | Last | Name | | | |------|------|--|--| | | | | | (a) Draw all alkenes with the formula C_7H_{12} that would give ethylcyclopentane as the product upon reaction with H₂ and Pd/C. Sam Structure drown twice = (b) Is ethylcyclopentane chiral (that is, are there enantiomeric forms of this molecule)? Circle the correct answer below. (c) Among the alkene structures you drew for part (a), redraw below any that corresponds to a chiral molecule (that is, to a molecule for which there are enantiomers). enantioners ok (d) Consider the result of taking each of the alkenes you drew for part (a) through the oxymercuration-reduction reaction sequence (step 1 = Hg(OAc)₂, THF, H₂O; step 2 = NaBH₄, NaOH, H₂O). Redraw below any of these alkenes that would give rise to a product mixture that would include diastereomeric molecules.